Person:
Moreno Jiménez, Florencio

Loading...
Profile Picture
First Name
Florencio
Last Name
Moreno Jiménez
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Óptica y Optometría
Department
Química Orgánica
Area
Química Orgánica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 37
  • Item
    Polar ammoniostyryls easily converting a clickable Q1 lipophilic BODIPY in an advanced plasma membrane probe†
    (Journal of Materials Chemistry B, 2023) Serrano-Buitrago, Sergio; Muñoz Úbeda, Mónica; Almendro Vedia, Víctor Galileo; Sánchez-Camacho, Juan; Lora Maroto, Beatriz; Moreno, Florencio; Bañuelos, Jorge; García-Moreno, Inmaculada; López Montero, Iván; Moya Cerero, Santiago De La; Moreno Jiménez, Florencio
    A very simple, small and symmetric, but highly bright, photostable and functionalizable molecular probe for plasma membrane (PM) has been developed from an accessible, lipophilic and clickable organic dye based on BODIPY. To this aim, two lateral polar ammoniostyryl groups were easily linked to increase the amphiphilicity of the probe and thus its lipid membrane partitioning. Compared to the BODIPY precursor, the transversal diffusion across lipid bilayers of the ammoniostyryled BODIPY probe was highly reduced, as evidenced by fluorescence confocal microscopy on model membranes built up as giant unilamellar vesicles (GUVs). Moreover, the ammoniostyryl groups endow the new BODIPY probe with the ability to optically work (excitation and emission) in the bioimaging-useful red region, as shown by staining of the plasma membrane of living mouse embryonic fibroblasts (MEFs). Upon incubation, this fluorescent probe rapidly entered the cell through the endosomal pathway. By blocking the endocytic trafficking at 4 °C, the probe was confined within the PM of MEFs. Our experiments show the developed ammoniostyrylated BODIPY as a suitable PM fluorescent probe, and confirm the synthetic approach for advancing PM probes, imaging and science.
  • Item
    Project number: 365
    Influencia del cambio en la metodología de enseñanza-aprendizaje y de evaluación, de presencial a on-line, en el aprendizaje de contenidos, competencias y en el rendimiento académico de estudiantes de primer curso de grado de la UCM
    (2021) García Fresnadillo, David; Cuervo Rodríguez, María Rocío; Moreno Jiménez, Florencio; Ramírez Castellanos, Julio; Arrieta Dillon, Marina Patricia; Constante Amores, Israel Alexander; Martínez Sánchez, Juan Carlos
    Debido a Covid-19, el cambio en el modo de enseñar y evaluar al alumnado, con más énfasis en el campus virtual, afectará sensiblemente al curso 2020-2021. Se analiza la influencia sobre el aprendizaje y rendimiento académico de la asignatura Química en los estudiantes de 1º curso de varios grados de ciencias de la UCM.
  • Item
    Circularly Polarized Luminescence from Simple Organic Molecules
    (Chemistry: a european journal, 2015) Márquez Sánchez-Carnerero, Esther María; Rodríguez Agarrabeitia, Antonia; Moreno Jiménez, Florencio; Lora Maroto, Beatriz; Muller, Gilles; Ortiz García, María Josefa; Moya Cerero, Santiago De La
    This article aims to show the identity of “circularly polarized luminescent active simple organic molecules” as a new concept in organic chemistry due to the potential interest of these molecules, as availed by the exponentially growing number of research articles related to them. In particular, it describes and highlights the interest and difficulty in developing chiral simple (small and non-aggregated) organic molecules able to emit left- or right-circularly polarized light efficiently, the efforts realized up to now to reach this challenging objective, and the most significant milestones achieved to date. General guidelines for the preparation of these interesting molecules are also presented.
  • Item
    Chiral microneedles from an achiral bis(boron dipyrromethene): spontaneous mirror symmetry breaking leading to a promising photoluminescent organic material
    (Langmuir, 2019) Gartzia-Rivero, Leire; Ray Leiva, César; Sánchez Carnerero, Esther M. Márquez; Bañuelos, Jorge; Moreno Jiménez, Florencio; Lora Maroto, Beatriz; García Moreno, Inmacualada; Infantes, Lourdes; Méndez Martín, María Bianchi; López Arbeloa, Íñigo María
    Supramolecular self-assembly of a highly flexible and achiral meso bis(boron dipyrromethene) [bis-(BODIPY)] dye straightforwardly yields fluorescent micro-fibers, exhibiting an intriguing anisotropic photonic behavior. This performance includes the generation of chiroptical activity owing to spontaneous mirror symmetry breaking (SMSB). Repetition of several self-assembly experiments demonstrates that the involved SMSB is not stochastic but quasi deterministic in the direction of the induced chiral asymmetry. The origin of these intriguing (chiro)photonic properties is revealed by fluorescent microspectroscopy studies of individual micrometric objects, combined with X-ray diffraction elucidation of microcrystals. Such a study demonstrates that J-like excitonic coupling between bis(BODIPY) units plays a fundamental role in their supramolecular organization, leading to axial chirality. Interestingly, the photonic behavior of the obtained fibers is ruled by inherent nonradiative pathways from the involved push-pull chromophores, and mainly by the complex excitonic interactions induced by their anisotropic supramolecular organization.
  • Item
    BINOLated aminostyryl BODIPYs: a workable organic molecular platform for NIR circularly polarized luminescence
    (Chemical Communications, 2021) Jiménez González, Josué; Díaz Norambuena, Carolina; Serrano Villar, Sergio; Ma, Shing Cho; Moreno Jiménez, Florencio; Maroto, Beatriz Lora; Bañuelos Prieto, Jorge; Muller, Gilles; Moya Cerero, Santiago De La
    The accessible at-boron-BINOLated 3,5-bis(4-aminostyryl)ated BODIPY scaffold is highlighted as a workable platform for developing enantiopure small organic molecules exhibiting CPL in the NIR region, even in water solution, the latter being key for CPL-based bioapplications. Synthetic simplicity, noticeable chiroptical efficiency in the NIR and the possibility to access water-soluble emitters pave the way for advancing CPL tools based on organic emitters and NI radiation.
  • Item
    New procedures for the synthesis of heterocyclic substituted and 2,4-difunctionalized pyrimidines
    (Tetrahedron, 1996) García Martínez, Antonio; Herrera Fernández, Antonio; Moreno Jiménez, Florencio; Muñoz Martínez, Pablo J.; Alonso Martín, Cristina; Subramanian, Laksminarayanapuran R.
    N-Tosyl-2- and -3-acetylpyrrols 1 or N-tosyl-2-pyrrolidone 5 were condensed with cyano compounds in the presence of triflic anhydride (Tf2O) to yield heteroarylpyrimidines. 2,4 Difunctionalized pyrimidines were obtained by reaction of the corresponding 2,4-bis(methylsulfonyl)pyrimidines with nucleophiles.
  • Item
    Chiral Organic Dyes Endowed with Circularly Polarized Laser Emission
    (Journal of Physical Chemistry C, 2017) Jiménez González, Josué; Cerdán Pedraza, Luis; Moreno Jiménez, Florencio; Maroto, Beatriz Lora; García Moreno, Inmaculada; Lunkley, Jamie L.; Muller, Gilles; Moya Cerero, Santiago De La
    The direct generation of efficient, tunable, and switchable circularly polarized laser emission (CPLE) would have far-reaching implications in photonics and material sciences. In this paper, we describe the first chiral simple organic molecules (SOMs) capable of simultaneously sustaining significant chemical robustness, high fluorescence quantum yields, and circularly polarized luminescence (CPL) ellipticity levels (|glum|) comparable to those of similar CPL-SOMs. All these parameters altogether enable efficient laser emission and CPLE with ellipticity levels 2 orders of magnitude stronger than the intrinsic CPL ones.
  • Item
    Project number: 51
    Introducción al diseño de Cursos Cero para materias básicas del primer curso de Grado en Ciencias mediante enseñanza virtual
    (2017) Cuervo Rodríguez, María Rocío; García Fresnadillo, David; Moreno Jiménez, Florencio; Sánchez Arroyo, Antonio José; García Pereira, Francisco Javier; Martínez Sánchez, Juan Carlos
    Evaluar, analizar la situación de partida de los alumnos de nuevo acceso al 1º curso de Grado en Facultades de Ciencias de la UCM (Biología, Óptica y Optometría y Química), y generar las bases para diseñar un Curso 0 de una materia básica, Química.
  • Item
    Modulating ICT emission: a new strategy to manipulate the CPL sign in chiral emitters
    (Chemical Communications, 2019) Jiménez González, Josué; Moreno Jiménez, Florencio; Maroto, Beatriz Lora; Cabreros, Trevor A.; Huy, Angelenia S.; Muller, Gilles; Bañuelos Prieto, Jorge; Moya Cerero, Santiago De La
    A new strategy to manipulate the circularly polarized luminescence (CPL) handedness in chiral emitters, based on modulating the population of an emissive ICT state, is proposed. Such a strategy is particularly interesting for conformationally rigid and non-aggregating chiral organic emitters, opening up new perspectives for the development of CPL application based on organic molecules
  • Item
    N-BODIPYs Come into Play: Smart Dyes for Photonic Materials
    (Chemistry: a european journal, 2017) Ray Leiva, César; Díaz Casado, Laura; Avellanal-Zaballa, Edurne; Bañuelos Prieto, Jorge; Cerdán Pedraza, Luis; García Moreno, Inmaculada; Moreno Jiménez, Florencio; Maroto, Beatriz Lora; López Arbeloa, Íñigo María; Moya Cerero, Santiago De La
    N-BODIPYs (diaminoboron dipyrromethenes) are unveiled as a new family of BODIPY dyes with huge technological potential. Synthetic access to these systems has been gained through a judicious design focused on stabilizing the involved diaminoboron chelate. Once stabilized, the obtained N-BODIPYs retain the effective photophysical behavior exhibited by other boron-substituted BODIPYs, such as O-BODIPYs. However, key bonding features of nitrogen compared to those of oxygen (enhanced bond valence and different bond directionality) open up new possibilities forfunctionalizing BODIPYs, allowing an increase in the number of pendant moieties (from two in O-BODIPYs, up to four in N-BODIPYs) near the chromophore and, therefore, greater control of the photophysics. As a proof of concept, the following findings are discussed: (1) the low-cost and straightforward synthesis of a selected series of N-BODIPYs; (2) their outstanding photophysical properties compared to those of related effective dyes (excellent emission signatures, including fluorescence in the solid state; notable lasing capacities in the liquid phase and when doped into polymers; improved laser performance compared to the parent F-BODIPYs); (3) the versatility of the diaminoboron moiety in allowing the generation of multifunctionalized BODIPYs, permitting access to both symmetric and asymmetric dyes; (4) the capability of such versatility to finely modulate the dye photophysics towards different photonic applications, from lasing to chemosensing.