Person:
Serrano Pedraza, Ignacio

Loading...
Profile Picture
First Name
Ignacio
Last Name
Serrano Pedraza
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Psicología
Department
Psicología Experimental, Procesos Cognitivos y Logopedia
Area
Psicología Básica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 22
  • Item
    Moderate acute alcohol intoxication has minimal effect on surround suppression measured with a motion direction discrimination task.
    (Journal of vision, 2015) Read, Jenny C A; Georgiou, Renos; Brash, Claire; Yazdani, Partow; Whittaker, Roger; Trevelyan, Andrew J; Serrano Pedraza, Ignacio
    A well-studied paradox of motion perception is that, in order to correctly judge direction in high-contrast stimuli, subjects need to observe motion for longer in large stimuli than in small stimuli. This effect is one of several perceptual effects known generally as "surround suppression." It is usually attributed to center-surround antagonism between neurons in visual cortex, believed to be mediated by GABA-ergic inhibition. Accordingly, several studies have reported that this index of surround suppression is reduced in groups known to have reduced GABA-ergic inhibition, including older people and people with schizophrenia and major depressive disorder. In this study, we examined the effect on this index of moderate amounts of ethanol alcohol. Among its many effects on the nervous system, alcohol potentiates GABA-ergic transmission. We therefore hypothesized that it should further impair the perception of motion in large stimuli, resulting in a stronger surround-suppression index. This prediction was not borne out. Alcohol consumption slightly worsened duration thresholds for both large and small stimuli, but their ratio did not change significantly.
  • Item
    Evidence for reciprocal antagonism between motion sensors tuned to coarse and fine features
    (Journal of vision, 2007) Serrano Pedraza, Ignacio; Goddard, Paul; Derrington, Andrew M
    Early visual processing analyses fine and coarse image features separately. Here we show that motion signals derived from fine and coarse analyses are combined in rather a surprising way: Coarse and fine motion sensors representing the same direction of motion inhibit one another and an imbalance can reverse the motion perceived. Observers judged the direction of motion of patches of filtered two-dimensional noise, centered on 1 and 3 cycles/deg. When both sets of noise were present and only the 3 cycles/deg noise moved, judgments were reversed at short durations. When both sets of noise moved, judgments were correct but sensitivity was impaired. Reversals and impairments occurred both with isotropic noise and with orientation-filtered noise. The reversals and impairments could be simulated in a model of motion sensing by adding a stage in which the outputs of motion sensors tuned to 1 and 3 cycles/deg and the same direction of motion were subtracted from one another. The subtraction model predicted and we confirmed in experiments with orientation-filtered noise that if the 1 cycle/deg noise flickered and the 3 cycles/deg noise moved, the 1 cycle/deg noise appeared to move in the opposite direction to the 3 cycles/deg noise even at long durations.
  • Item
    Visual suppression in intermittent exotropia during binocular alignment.
    (Investigative ophthalmology & visual science, 2011) Serrano Pedraza, Ignacio; Manjunath, Vina; Osunkunle, Olaoluwakitan; Clarke, Michael P; Read, Jenny C A
    PURPOSE To investigate the cortical mechanisms that prevent diplopia in intermittent exotropia (X(T)) during binocular alignment (orthotropia). METHODS The authors studied 12 X(T) patients aged 5 to 22 years. Seventy-five percent had functional stereo vision with stereoacuity similar to that of 12 age-matched controls (0.2-3.7 min arc). Identical face images were presented to the two eyes for 400 ms. In one eye, the face was presented at the fovea; in the other, offset along the horizontal axis with up to 12° eccentricity. The task was to indicate whether one or two faces were perceived. RESULTS All X(T) patients showed normal diplopia when the nonfoveal face was presented to nasal hemiretina, though with a slightly larger fusional range than age-matched controls. However, 10 of 12 patients never experienced diplopia when the nonfoveal face was presented to temporal hemiretina (i.e., when the stimulus simulated exodeviation). Patients showed considerable variability when the single image was perceived. Some patients suppressed the temporal stimulus regardless of which eye viewed it, whereas others suppressed a particular eye even when it viewed the foveal stimulus. In two patients, the simulated exodeviation might have triggered a shift from normal to anomalous retinal correspondence. CONCLUSIONS Antidiplopic mechanisms in X(T) can be reliably triggered by purely retinal information during orthotropia, but the nature of these mechanisms varies between patients.
  • Item
    Single-band amplitude demodulation of Müller-Lyer illusion images
    (The Spanish journal of psychology, 2007) Sierra Vázquez, Vicente; Serrano Pedraza, Ignacio
    The perception of the Müller-Lyer illusion has previously been explained as a result of visual low band-pass spatial filtering, although, in fact, the illusion persists in band-pass and high-pass filtered images without visible low-spatial frequencies. A new theoretical framework suggests that our perceptual experience about the global spatial structure of an image corresponds to the amplitude modulation (AM) component (or its magnitude, also called envelope) of its AM-FM (alternatively, AM-PM) decomposition. Because demodulation is an ill-posed problem with a non-unique solution, two different AM-FM demodulation algorithms were applied here to estimate the envelope of images of Müller-Lyer illusion: the global and exact Daugman and Downing (1995) AMPM algorithm and the local and quasi-invertible Maragos and Bovik (1995) DESA. The images used in our analysis include the classic configuration of illusion in a variety of spatial and spatial frequency content conditions. In all cases, including those of images for which visual low-pass spatial filtering would be ineffective, the envelope estimated by single-band amplitude demodulation has physical distortions in the direction of perceived illusion. It is not plausible that either algorithm could be implemented by the human visual system. It is shown that the proposed second order visual model of pre-attentive segregation of textures (or "back-pocket" model) could recover the image envelope and, thus, explain the perception of this illusion even in Müller-Lyer images lacking low spatial frequencies.
  • Item
    Effects of spatial frequency content on classification of face gender and expression.
    (The Spanish journal of psychology, 2010) Aguado Aguilar, Luis; Serrano Pedraza, Ignacio; Rodríguez, Sonia; Román, Francisco J
    The role of different spatial frequency bands on face gender and expression categorization was studied in three experiments. Accuracy and reaction time were measured for unfiltered, low-pass (cut-off frequency of 1 cycle/deg) and high-pass (cutoff frequency of 3 cycles/deg) filtered faces. Filtered and unfiltered faces were equated in root-mean-squared contrast. For low-pass filtered faces reaction times were higher than unfiltered and high-pass filtered faces in both categorization tasks. In the expression task, these results were obtained with expressive faces presented in isolation (Experiment 1) and also with neutral-expressive dynamic sequences where each expressive face was preceded by a briefly presented neutral version of the same face (Experiment 2). For high-pass filtered faces different effects were observed on gender and expression categorization. While both speed and accuracy of gender categorization were reduced comparing to unfiltered faces, the efficiency of expression classification remained similar. Finally, we found no differences between expressive and non expressive faces in the effects of spatial frequency filtering on gender categorization (Experiment 3). These results show a common role of information from the high spatial frequency band in the categorization of face gender and expression.
  • Item
    Stereo vision requires an explicit encoding of vertical disparity.
    (Journal of vision, 2009) Serrano Pedraza, Ignacio; Read, Jenny C A
    Vertical disparities influence the perception of 3D depth, but little is known about the neuronal mechanisms underlying this. One possibility is that these perceptual effects are mediated by an explicit encoding of two-dimensional disparity. Recently, J. C. A. Read and B. G. Cumming (2006) pointed out that current psychophysical and physiological evidence is consistent with a much more economical one-dimensional encoding. Almost all relevant information about vertical disparity could in theory be extracted from the activity of purely horizontal-disparity sensors. Read and Cumming demonstrated that such a 1D system would experience Ogle's induced effect, a famous illusion produced by vertical disparity. Here, we test whether the brain employs this 1D encoding, using a version of the induced effect stimulus that simulates the viewing geometry at infinity and thus removes the cues which are otherwise available to the 1D model. This condition was compared to the standard induced effect stimulus, presented on a frontoparallel screen at finite viewing distance. We show that the induced effects experienced under the two conditions are indistinguishable. This rules out the 1D model proposed by Read and Cumming and shows that vertical disparity, including sign, must be explicitly encoded across the visual field.
  • Item
    Testing the horizontal-vertical stereo anisotropy with the critical-band masking paradigm
    (Journal of vision, 2013) Serrano Pedraza, Ignacio; Brash, Claire; Read, Jenny C A
    Stereo vision has a well-known anisotropy: At low frequencies, horizontally oriented sinusoidal depth corrugations are easier to detect than vertically oriented corrugations (both defined by horizontal disparities). Previously, Serrano-Pedraza and Read (2010) suggested that this stereo anisotropy may arise because the stereo system uses multiple spatial-frequency disparity channels for detecting horizontally oriented modulations but only one for vertically oriented modulations. Here, we tested this hypothesis using the critical-band masking paradigm. In the first experiment, we measured disparity thresholds for horizontal and vertical sinusoids near the peak of the disparity sensitivity function (0.4 cycles/°), in the presence of either broadband or notched noise. We fitted the power-masking model to our results assuming a channel centered on 0.4 cycles/°. The estimated channel bandwidths were 2.95 octaves for horizontal and 2.62 octaves for vertical corrugations. In our second experiment we measured disparity thresholds for horizontal and vertical sinusoids of 0.1 cycles/° in the presence of band-pass noise centered on 0.4 cycles/° with a bandwidth of 0.5 octaves. This mask had only a small effect on the disparity thresholds, for either horizontal or vertical corrugations. We simulated the detection thresholds using the power-masking model with the parameters obtained in the first experiment and assuming either single-channel and multiple-channel detection. The multiple-channel model predicted the thresholds much better for both horizontal and vertical corrugations. We conclude that the human stereo system must contain multiple independent disparity channels for detecting horizontally oriented and vertically oriented depth modulations.
  • Item
    Low spatial frequency filtering modulates early brain processing of affective complex pictures
    (Neuropsychologia, 2007) Alorda, Catalina; Serrano Pedraza, Ignacio; Campos Bueno, José Javier; Sierra Vázquez, Vicente; Montoya, Pedro
    Recent research on affective processing has suggested that low spatial frequency information of fearful faces provide rapid emotional cues to the amygdala, whereas high spatial frequencies convey fine-grained information to the fusiform gyrus, regardless of emotional expression. In the present experiment, we examined the effects of low (LSF, <15 cycles/image width) and high spatial frequency filtering (HSF, >25 cycles/image width) on brain processing of complex pictures depicting pleasant, unpleasant, and neutral scenes. Event-related potentials (ERP), percentage of recognized stimuli and response times were recorded in 19 healthy volunteers. Behavioral results indicated faster reaction times in response to unpleasant LSF than to unpleasant HSF pictures. Unpleasant LSF pictures and pleasant unfiltered pictures also elicited significant enhancements of P1 amplitudes at occipital electrodes as compared to neutral LSF and unfiltered pictures, respectively; whereas no significant effects of affective modulation were found for HSF pictures. Moreover, mean ERP amplitudes in the time between 200 and 500ms post-stimulus were significantly greater for affective (pleasant and unpleasant) than for neutral unfiltered pictures; whereas no significant affective modulation was found for HSF or LSF pictures at those latencies. The fact that affective LSF pictures elicited an enhancement of brain responses at early, but not at later latencies, suggests the existence of a rapid and preattentive neural mechanism for the processing of motivationally relevant stimuli, which could be driven by LSF cues. Our findings confirm thus previous results showing differences on brain processing of affective LSF and HSF faces, and extend these results to more complex and social affective pictures.
  • Item
    Power spectrum model of visual masking: simulations and empirical data
    (Journal of the Optical Society of America. A, Optics, image science, and vision, 2013) Serrano Pedraza, Ignacio; Sierra Vázquez, Vicente; Derrington, Andrew M
    In the study of the spatial characteristics of the visual channels, the power spectrum model of visual masking is one of the most widely used. When the task is to detect a signal masked by visual noise, this classical model assumes that the signal and the noise are previously processed by a bank of linear channels and that the power of the signal at threshold is proportional to the power of the noise passing through the visual channel that mediates detection. The model also assumes that this visual channel will have the highest ratio of signal power to noise power at its output. According to this, there are masking conditions where the highest signal-to-noise ratio (SNR) occurs in a channel centered in a spatial frequency different from the spatial frequency of the signal (off-frequency looking). Under these conditions the channel mediating detection could vary with the type of noise used in the masking experiment and this could affect the estimation of the shape and the bandwidth of the visual channels. It is generally believed that notched noise, white noise and double bandpass noise prevent off-frequency looking, and high-pass, low-pass and bandpass noises can promote it independently of the channel's shape. In this study, by means of a procedure that finds the channel that maximizes the SNR at its output, we performed numerical simulations using the power spectrum model to study the characteristics of masking caused by six types of one-dimensional noise (white, high-pass, low-pass, bandpass, notched, and double bandpass) for two types of channel's shape (symmetric and asymmetric). Our simulations confirm that (1) high-pass, low-pass, and bandpass noises do not prevent the off-frequency looking, (2) white noise satisfactorily prevents the off-frequency looking independently of the shape and bandwidth of the visual channel, and interestingly we proved for the first time that (3) notched and double bandpass noises prevent off-frequency looking only when the noise cutoffs around the spatial frequency of the signal match the shape of the visual channel (symmetric or asymmetric) involved in the detection. In order to test the explanatory power of the model with empirical data, we performed six visual masking experiments. We show that this model, with only two free parameters, fits the empirical masking data with high precision. Finally, we provide equations of the power spectrum model for six masking noises used in the simulations and in the experiments.
  • Item
    Antagonism between fine and coarse motion sensors depends on stimulus size and contrast
    (Journal of vision, 2010) Serrano Pedraza, Ignacio; Derrington, Andrew M
    The perceived direction of motion of a brief visual stimulus that contains fine features reverses if static coarser features are added to it. Here we show that the reversal in perceived direction disappears if the stimulus is reduced in size from 2.8 deg to 0.35 deg radius. We show that for a stimulus with 1.4 deg radius, the reversals occur when the ratio between the contrast of the fine features and of the coarser features is higher than 0.8 and lower than 4. For stimulus with 0.35 deg radius, the reversals never appear for any contrast ratio. We also show that if the stimulus is presented within an annular window with small radius, errors disappear but they return if the radius is increased to 2 deg. The errors in motion discrimination described here can be explained by a model of motion sensing in which the signals from fine-scale and coarse-scale sensors are subtracted from one another (I. Serrano-Pedraza, P. Goddard, & A. M. Derrington, 2007). The model produces errors in direction when the signals in the fine and coarse sensors are approximately balanced. The errors disappear when stimulus size is reduced because the reduction in size differentially reduces the response of the low spatial frequency motion sensors.