Person:
Moya Cerero, Santiago De La

Loading...
Profile Picture
First Name
Santiago De La
Last Name
Moya Cerero
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Química Orgánica
Area
Química Orgánica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 19
  • Item
    Controlling Vilsmeier-Haack processes in meso-methylBODIPYs: A new way to modulate finely photophysical properties in boron dipyrromethenes
    (Dyes and Pigments, 2017) Palao Utiel, Eduardo; Montalvillo Jiménez, Laura; Esnal Martínez, Ixone; Prieto Montero, Ruth; Rodríguez Agarrabeitia, Antonia; García Moreno, Inmaculada; Bañuelos Prieto, Jorge; López Arbeloa, Íñigo María; Moya Cerero, Santiago De La; Ortiz García, María Josefa
    In the herein work we report the fine and selective control of competitive processes when submitting meso-methylBODIPYs to Vilsmeier-Haack reaction conditions. These competitive processes generate BODIPYs with opposed photophysical properties, from highly fluorescent dyes enabling laser emission, to non-fluorescent singlet-oxygen photosensitizers. The synthetic control is exerted on the basis of the structure of the starting BODIPY, as well as the electrophilic character (hard or soft) of the formylating reagent.
  • Item
    Circularly Polarized Luminescence from Simple Organic Molecules
    (Chemistry: a european journal, 2015) Márquez Sánchez-Carnerero, Esther María; Rodríguez Agarrabeitia, Antonia; Moreno Jiménez, Florencio; Lora Maroto, Beatriz; Muller, Gilles; Ortiz García, María Josefa; Moya Cerero, Santiago De La
    This article aims to show the identity of “circularly polarized luminescent active simple organic molecules” as a new concept in organic chemistry due to the potential interest of these molecules, as availed by the exponentially growing number of research articles related to them. In particular, it describes and highlights the interest and difficulty in developing chiral simple (small and non-aggregated) organic molecules able to emit left- or right-circularly polarized light efficiently, the efforts realized up to now to reach this challenging objective, and the most significant milestones achieved to date. General guidelines for the preparation of these interesting molecules are also presented.
  • Item
    Exploring BODIPY Derivatives as Singlet Oxygen Photosensitizers for PDT
    (Photochemistry and Photobiology, 2020) Prieto Moreno, Ruth; Prieto Castañeda, Alejandro; Sola Llano, Rebeca; Rodríguez Agarrabeitia, Antonia; García Fresnadillo, David; López Arbeloa, Íñigo María; Villanueva Oroquieta, Ángeles; Ortiz García, María Josefa; Moya Cerero, Santiago De La; Martínez Martínez, Virginia
    This minireview is devoted to honoring the memory of Dr. Thomas Dougherty, a pioneer of modern photodynamic therapy (PDT). It compiles the most important inputs made by our research group since 2012 in the development of new photosensitizers based on BODIPY chromophore which, thanks to the rich BODIPY chemistry, allows a finely tuned design of the photophysical properties of this family of dyes to serve as efficient photosensitizers for the generation of singlet oxygen. These two factors, photophysical tuning and workable chemistry, have turned BODIPY chromophore as one of the most promising dyes for the development of improved photosensitizers for PDT. In this line, this minireview is mainly related to the establishment of chemical methods and structural designs for enabling efficient singlet oxygen generation in BODIPYs. The approaches include the incorporation of heavy atoms, such as halogens (iodine or bromine) in different number and positions on the BODIPY scaffold, and also transition metal atoms, by their complexation with Ir(III) center, for instance. On the other hand, low‐toxicity approaches, without involving heavy metals, have been developed by preparing several orthogonal BODIPY dimers with different substitution patterns. The advantages and drawbacks of all these diverse molecular designs based on BODIPY structural framework are described.
  • Item
    Rational Design of Advanced Photosensitizers Based on Orthogonal BODIPY Dimers to Finely Modulate Singlet Oxygen Generation
    (Chemistry: a european journal, 2017) Epelde Elezcano, Nerea; Palao Utiel, Eduardo; Manzano, Hegoi; Prieto Castañeda, Alejandro; Rodríguez Agarrabeitia, Antonia; Tabero Truchado, Andrea; Villanueva Oroquieta, Ángeles; Moya Cerero, Santiago De La; López Arbeloa, Íñigo María; Martínez Martínez, Virginia; Ortiz García, María Josefa
    The synthesis, photophysical characterization, and modeling of a new library of halogen-free photosensitizers (PS) based on orthogonal boron dipyrromethene (BODIPY) dimers are reported. Herein we establish key structural factors in order to enhance singlet oxygen generation by judiciously choosing the substitution patterns according to key electronic effects and synthetic accessibility factors. The photosensitization mechanism of orthogonal BODIPY dimers is demonstrated to be strongly related to their intrinsic intramolecular charge transfer (ICT) character through the spin-orbit charge-transfer intersystem crossing (SOCT-ISC) mechanism. Thus, singlet oxygen generation can be effectively modulated through the solvent polarity and the presence of electron-donating or withdrawing groups in one of the BODIPY units. The photodynamic therapy (PDT) activity is demonstrated by in vitro experiments, showing that selected photosensitizers are efficiently internalized into HeLa cells, exhibiting low dark toxicity and high phototoxicity, even at low PS concentration (0.05–5×10−6 m).
  • Item
    Circularly Polarized Luminescence by Visible-Light Absorption in a Chiral O-BODIPY Dye: Unprecedented Design of CPL Organic Molecules from Achiral Chromophores
    (Journal of the American Chemical Society, 2014) Márquez Sánchez-Carnerero, Esther María; Moreno Jiménez, Florencio; Lora Maroto, Beatriz; Rodríguez Agarrabeitia, Antonia; Ortiz García, María Josefa; Vo, Bryan G.; Muller, Gilles; Moya Cerero, Santiago De La
    Circularly polarized luminescence (CPL) in simple (small, nonaggregated, nonpolymeric) O-BODIPYs(R)-1 and (S)-1 by irradiation with visible light is first detected as proof of the ability of a new structural design to achieve CPL from inherently achiral monochromophore systems in simple organic molecules. The measured level of CPL (|glum|) in solution falls into the usual range of that obtained from other simple organic molecules (10−5−10−2range), but the latter having more complex architectures since axially chiral chromophores or multichromophore systems are usually required. The new design is based on chirally perturbing the acting achiral chromophore by orthogonally tethering a single axially chiral 1,1′-binaphtyl moiety to it. The latter does not participate as a chromophore in the light-absorption/emission phenom-enon. This simple design opens up new perspectives for the future development of new small-sized CPL organic dyes (e.g., those based on other highly luminescent achiral chromophores and/or chirally perturbing moieties), as well as for the improvement of the CPL properties of the organic molecules spanning their use in photonic applications.
  • Item
    Development of Geometry-Controlled All-Orthogonal BODIPY Trimers for Photodynamic Therapy and Phototheragnosis
    (Organic Letters, 2022) Prieto Castañeda, Alejandro; García Garrido, Fernando; Díaz Norambuena, Carolina; Escriche Navarro, Blanca; García Fernández, Alba; Bañuelos, Jorge; Rebollar, Esther; García Moreno, Inmaculada; Martínez Máñez, Ramón; Moya Cerero, Santiago De La; Rodríguez Agarrabeitia, Antonia; Ortiz García, María Josefa
    We have established an easy synthetic protocol for selectively developing all-orthogonal BODIPY trimers with unprecedented geometries on the basis of selecting methyl oxidation versus electrophilic formylation of key dimeric precursors. Photophysical characterization together with biological assays unraveled the most suitable BODIPY−BODIPY geometrical arrangements within the trimer, forcing them to serve as molecular platforms for the development of new, advanced heavy-atom-free photosensitizers for photodynamic therapy and phototheragnosis.
  • Item
    Unprecedented induced axial chirality in a molecular BODIPY dye: strongly bisignated electronic circular dichroism in the visible region
    (Chemical Communications, 2013) Márquez Sánchez-Carnerero, Esther María; Moreno Jiménez, Florencio; Lora Maroto, Beatriz; Rodríguez Agarrabeitia, Antonia; Bañuelos Prieto, Jorge; Arbeloa, Teresa; López Arbeloa, Íñigo María; Ortiz García, María Josefa; Moya Cerero, Santiago De La
    Enantiomeric bis(BODIPYs) 1a and 1b exhibit strong bisignated ECD due to the formation of a stable helical conformation with induced axial chirality, which allows efficient excito coupling of the BODIPY chromophores in the Vis region.
  • Item
    Bis(haloBODIPYs) with Labile Helicity: Valuable Simple Organic Molecules That Enable Circularly Polarized Luminescence
    (Chemistry: a european journal, 2016) Ray Leiva, César; Márquez Sánchez-Carnerero, Esther María; Moreno Jiménez, Florencio; Lora Maroto, Beatriz; Rodríguez Agarrabeitia, Antonia; Ortiz García, María Josefa; López Arbeloa, Íñigo María; Bañuelos Prieto, Jorge; Cohovi, Komlan D.; Lunkley, jamie L.; Muller, Gilles; Moya Cerero, Santiago De La
    Simple organic molecules (SOM) based on bis(haloBODIPY) are shown to enable circularly polarized luminescence (CPL), giving rise to a new structural design for technologically valuable CPL-SOMs. The established design comprises together synthetic accessibility, labile helicity, possibility of reversing the handedness of the circularly polarized emission, and reactive functional groups, making it unique and attractive as advantageous platform for the development of smart CPL-SOMs.
  • Item
    Negishi reaction in BODIPY dyes. Unprecedented alkylation by palladium-catalyzed C–C coupling in boron dipyrromethene derivatives
    (RSC Advances, 2014) Durán Sampedro, Gonzalo; Palao, Eduardo; Rodríguez Agarrabeitia, Antonia; Moya Cerero, Santiago De La; Boens, Noël; Ortiz García, María Josefa
    Negishi reactions of 3-halogen and 3,5-dihalogen substituted BODIPYs with different organozinc reagents are reported as the first examples of this valuable palladium-catalyzed C–C coupling reaction into the family of the BODIPY dyes. It is demonstrated that the Negishi coupling is especially useful for obtaining interesting alkylated BODIPYs, including synthetically-valuable asymmetrically-3,5-disubstituted BODIPYs.
  • Item
    First Lanthanide Complex for de Novo Phasing in Native Protein Crystallography at 1 Å Radiation
    (ACS Applied Bio Materials, 2021) Prieto Castañeda, Alejandro; Martínez Caballero, Siseth; Rodríguez Agarrabeitia, Antonia; García Moreno, Inmaculada; Moya Cerero, Santiago De La; Ortiz García, María Josefa; Hermoso, Juan A.
    Phasing agents enabling de novo protein structure determination at ca. 1 Å, the wavelength corresponding to the maximum intensity of the synchrotron facilities applied in biomacromolecular crystallography, have been long sought-after. The first phasing agent designed for solving native protein structures at 0.97934 Å is described herein. The agent consists of a neutral ytterbium(III)-caged complex that exhibits higher anomalous signals at shorter wavelengths when compared to the best, currently applied lanthanide-based phasing agents, all of them based on gadolinium or terbium. As a proof of principle, the complex allows determining the 3D structure of a 36 kDa protein without setting the incident beam wavelength at the metal absorption edge, the strategy followed to date to gain the strongest anomalous signal even at the expense of crystallographic resolution. The agent becomes nondisruptive to the diffraction quality of the marked crystals and allows determining accurate phases, both leading to high-quality electron-density maps that enable the full tracing of the protein structure only with one agent unit bound to the protein. The high phasing power, efficient binding to the protein, low metal−macromolecule ratio, and easy handling support the developed Yb(III) complex as the best phasing agent for X-ray crystallography of a complex biomacromolecule without using modified analogues.