Elimination of Te precipitates from CdTe wafers

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Iop Publishing Ltd
Google Scholar
Research Projects
Organizational Units
Journal Issue
Undoped and doped CdTe wafers have been thermally annealed in Ga melt, or in Cd vapour or in a vacuum to eliminate Te precipitates from the volume of the wafers. The effect of annealing conditions on the transformation of Te precipitates has been studied by Raman scattering (RS) and cathodoluminescence (CL) techniques. The as and ct spectra of the as-grown and annealed wafers are discussed in connection with the doping and native structural defects and residual impurities. The kinetics of elimination of Te precipitates was found to be similar in the undoped and doped wafers. The rate of elimination is the highest for the annealing in Ga melt. Precipitate-free wafers have been obtained by annealing in Ga melt at 600 degrees C for 24 h. Simultaneously with the elimination of Te precipitates, Ga melt causes the in-diffusion of Ga atoms into the wafers. This implies that annealing in Ga melt could be a superior procedure for the elimination of Te precipitates from CdTe wafers in which Ga doping is not important or is desired.
© 1995 iOP Publishing Ltd. Two of us (NVS and UP) thank research fellowships from the Spanish Ministeno de Educacion y Ciencia. This work has been supported by DGICYT (project PB93- 1256).
Unesco subjects
[I] Sen S, Konkel W H. Tighe S 1. Bland L G, Sharma S R andTaylor R E 1988 J. Cryst. Growth 86 111-17 [2] Brion H G, Mews C, Hahn I and Schaufele U 1993 J. Cryst. rowth 134 281-6 [3] .. Javatirtha H N, Henderson D’O, Burger A and Volz M P 1993 Appl. Phys. Lett. 62 573-5 [4] Vvdvanalh .. H R. Ellsworth J A, Parkinson J B. Kennedy J J, Dean B, Johnson C I, Neugebauer G T, Sepich 1 and Liao P K 1993 J. Electron. Mater. 22 1073-80 [5] Peters K, Wenzel A and Rudolph P 1990 Cryst. Res. Technol. 25 1107-16 and references therein [6] Jones E D, Malzbender J, Mullin J B and Shaw N 1994 J. Phys.: Condens. Matter 6 7499-504 [7] Sochinskii N V, Semno M D, Babenlsov V N, Tarbaev N I. Garrido J and Didguez E 1994 Semicond. Sci. Technol. 9 1713-18 [8] Sochinskii N V, Babentsov V N, Tarbaev N I, Serrano M D and Di6guez E 1993 Mater. Res. Bull. 28 1061-6 [9] Koralewskii M, Sochinskii N V. Serrano M D, Didguez E, Ganido I, Lifante G, Noheda B and Gonzalo J A 1994 Appl. Phys. Comman 13 69-78 [10] Sochinskii N V. Babentsov V N, Kletskii S V, Serrano M D and Didguez E 1993 Phys. Status Solidi a 140 445-51 [11] Sochinskii N V, Serrano M D, Bemardi S and Diéguez E 1994 Proc. ‘Advanced Infrared Teclmology and Application’ (Capri, September 1993) (Florence: Atti Fond. G.R.) 43-55 [12] Shin S H. Bajaj J, Moudy L A and Cheung D T 1983 Appl. Phys. Lett. 43 68-70 [13] Kim W J. Park M J, Kim S U, Lee T S. Kim I M, Song W J and Suh S H 1990 J. Cryst. Growth 104 677-82 [14] Sochinskii N V, Serrano M D, Di€guez E, Agull6-Rueda F. Pal U. Piaueras J and Fernandez P 1995 J. ADDL .. Phys. 77 at press [15] .. Amirtharai R M and Poll& F H 1984 ADPI. .. Phvs. Lett. 45 789-91 [16] .. Dominguez-Adome F, Piqueras J and Fernández P 1991 Appi phys. Lett. 58 257-9 [17] .. Pal U. Piqueras I, Fernández P, Serrano M D and Diéguez E 1994-J. Appl. Phys. 76 3720-3 [18] Rudolph P, Neubert M and Miihlberg M 1993 J. Cyst. Growth 128 582-7 [19] Schwan R and Benz K W 1994 J. Cryst. Gmth 144 15-6