Study of the electrical activation of Si+-implanted InGaAs by means of Raman scattering

Thumbnail Image
Full text at PDC
Publication Date
Artús, L.
Blanco, N
Cuscó, R.
Hernández, S.
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Institute of Physics
Google Scholar
Research Projects
Organizational Units
Journal Issue
Raman scattering has been used to study the lattice recovery and electrical activation of Si+-implanted In0.53Ga0.47 As achieved by rapid thermal annealing. The degree of crystallinity recovery, of totally amorphized samples is studied for annealing temperatures between 300 and 875degreesC. A good degree of recovery is achieved for an annealing temperature of 600degreesC. Higher annealing temperatures are required to electrically activate the Si donors. The observed LO phonon-plasmon coupled modes allow us to monitor the electrical activation by means of Raman scattering. We find that electrical activation sets in for annealing temperatures around 700degreesC, and gradually increases up to an annealing temperature of 875degreesC. The optimal conditions for the rapid thermal annealing are found to be 875degreesC for 10 s.
© American Institute of Physics. The authors wish to acknowledge the Spanish Ministerio de Ciencia y Tecnología for financial support. One of the authors (S.H.)acknowledges support from the Departament d’Universitats i Recerca de la Generalitat de Catalunya.
Unesco subjects
1) Y. G. Wey, D. L. Crawford, K. Giboney, J. E. Bowers, M. J. Rodwell, P. Silvestre, M. J. Hafich, and G. Y. Robinson, Appl. Phys. Lett., 58, 2156, 1991. 2) F. E. Ejeckam, C. L. Chua, Z. H. Zhu, Y. H. Lo, M. Hong, and R. Bhat, Appl. Phys. Lett., 67, 3936, 1995. 3) K. W. Wang, C. L. Cheng, J. Long, and D. Mitcham, IEEE Electron Device Lett., 9, 205, 1988. 4) S. Koumetz, J. Marcon, K. Ketata, M. Ketata, C. Dubon-Chevalier, P. Launay, and J. L. Benchimol, Appl. Phys. Lett., 67, 2161, 1995. 5) J. G. Bauer, H. Albrecht, L. Hoffmann, D. Römer, and J. W. Walter, IEEE Photonics Technol. Lett., 8, 566, 1996. 6) S. Hernández, B. Marcos, R. Cuscó, N. Blanco, G. González-Díaz, and L. Artús, J. Lumin., 87-89, 721 2000. 7) L. Artús, R. Cuscó, J. Ibáñez, J. M. Martín, and G. González-Díaz, J. Appl. Phys., 82, 3736, 1997. 8) K. Kamimoto and T. Katoda, Appl. Phys. Lett., 42, 811, 1983. 9) S. M. Kelso, D. E. Aspnes, M. A. Pollack, and R. E. Nahory, Phys. Rev. B, 26, 6669, 1982. 10) J. Groenen, R. Carles, G. Landa, C. Guerret-Piécourt, C. Fontaine, and M. Gendry, Phys. Rev. B, 58, 10, 452, 1998. 11) T. P. Pearsall, R. Carles, and J. C. Portal, Appl. Phys. Lett., 42, 436, 1983. 12) J. P. Estrera, P. D. Stevens, R. Glosser, W. M. Duncan, Y. C. Kao, H. Y. Liu, and E. A. Beam III, Appl. Phys. Lett., 61, 1927, 1992. 13) G. Landa, R. Carles, and J. B. Renucci, Solid State Commun., 86, 351, 1993. 14) R. Cuscó, L. Artús, S. Hernández, J. Ibáñez, and M. Hopkinson, Phys. Rev. B, 65, 35210, 2002. 15) M. N. Blanco, E. Redondo, F. Calle, I. Mártil, and G. González-Díaz, J. Appl. Phys., 87, 3478, 2000. 16) S. Hernández, N. Blanco, I. Mártil, G. González-Díaz, R. Cuscó, and L. Artús, to appear in J. Appl. Phys., 2003.