Asymptotics of the trap-dominated Gunn effect in p-type Ge

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
We present an asymptotic analysis of the Gunn effect in a drift-diffusion model - including electric-field-dependent generation-recombination processes - for long samples of strongly compensated p-type Ge at low temperature and under d.c. voltage bias. During each Gunn oscillation, there are different stages corresponding to the generation, motion and annihilation of solitary waves. Each stage may be described by one evolution equation for only one degree of freedom (the current density), except for the generation of each new wave. The wave generation is a faster process that may be described by solving a semiinfinite canonical problem. As a result of our study we have found that (depending on the boundary condition) one or several solitary waves may be shed during each period of the oscillation. Examples of numerical simulations validating our analysis are included.
S.W. Teitsworth, R.M. Westervelt and E.E. Hailer, Phys. Rev. Lett. 51 (1983) 825. A.M. Kahn, D.J. Mar and R.M. Westervelt, Phys. Rev. B 43 (1991) 9740. J.B. Gunn, IBM .I. Res. Dev. 8 (1964) 141. A.M. Kahn, D.J. Mar and R.M. Westervelt, Phys. Rev. B 46 (1992) 7469. A.M. Kahn, D.J. Mar and R.M. Westervelt, Phys. Rev. B 45 (1992) 8342. A.M. Kahn, D.J. Mar and R.M. Westervelt, Phys. Rev. Lett. 46 (1992) 369. S.W. Teitsworth and R.M. Westervelt, Phys. Rev. Lett. 53 (1984) 2587. R.M. Westervelt and S.W. Teitsworth, J. Appl. Phys. 57 (1985) 5457. L.L. Bonilla, Phys. Rev. B 45 (1992) 11642. N.M. Haegel and A.M. White, Infrared Phys. 29 (1989) 915. H. Kroemer, IEEE Trans. ED- 15 ( 1968) 8 19. L.L. Bonilla, I.R. Cantalapiedra, M.J. Bergmann and SW. Teitsworth, Semicond. Sci. Technol. 9 (1994) 599. V.V. Mitin, Appl. Phys. A 39 (1986) 123. E. Schiill, Solid-State Electron. 31 (1988) 539. E. Schiill, Appl. Phys. A 48 (1989) 95. T. Kuhn et al., Phys. Rev. B 48 (1993) 1478. I.R. Cantalapiedra, L.L. Bonilla, M.J. Bergmann and S.W. Teitsworth, Phys. Rev. B 48 (1993) 12278. M.J. Bergmann, S.W. Teitsworth, L.L. Bonilla and I.R. Cantalapiedra, Phys. Rev. B 53 (1996) 1327. S.W. Teitsworth, M.J. Bergmann and L.L. Bonilla, in: Non-linear Dynamics and Pattern Formation in Semiconductors and Devices, Springer Proceedings in Physics, ed. F.-J. Niedemostheide, Vol. 79 (Springer, Berlin, 1995) pp. 46-69. L.L. Bonilla and S.W. Teitsworth, Physica D 50 (1991) 545. L.L. Bonilla, Physica D 55 (1992) 182. D. Henry, Geometric theory of semilinear equations, Lecture Notes in Mathematics, Vol. 840 (Springer, Berlin, 1981). L.L. Bonilla, F.J. Higuera and S. Venakides, SIAM J. Appl. Math. 54 (1994) 1521. F.J. Higuera and L.L. Bonilla, Physica D 57 (1992) 161. L.L. Bonilla and I.R. Cantalapiedra, preprint (1996).