Publication:
Effects of Hypercholesterolaemia in the Retina

Research Projects
Organizational Units
Journal Issue
Abstract
Description
© 2012 Triviño et al., licensee InTech. This is an open access chapter distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Keywords
Citation
[1] Zilversmit DB. Atherogenesis: a postprandial phenomenon. Circulation 1979;60(3) 473-485. [2] G. Finking, H. Hanke, Nikolaj Nikolajewitsch Anitschkow (1885-1964) established the cholesterol-fed rabbit as a model for atherosclerosis research. Atherosclerosis 135 1997 1 17. [3] Yanni AE. The laboratory rabbit: an animal model of atherosclerosis research. Laboratory Animals 38 2004 3 246256. [4]C. Reddy, E. L. Stock, A. D. Mendelsohn, H. S. Nguyen, S. I. Roth, S. Ghosh, Pathogenesis of experimental lipid keratopathy: corneal and plasma lipids. Investigative Ophthalmology & Visual Science 28 1987 9 14921496. [5] S. I. Roth, E. L. Stock, J. M. Siel, A. Mendelsohn, C. Reddy, D. G. Preskill, S. Ghosh, Pathogenesis of experimental lipid keratopathy. An ultrastructural study of an animal model system. Investigative Ophthalmology & Visual Science 29 1988 10 15441551. [6] Garibaldi BA, Goad ME. Lipid keratopathy in the Watanabe (WHHL) rabbit. Veterinary Pathology 25 1988 2 173174. [7] Hogan MJ, Alvarado JA, Weddell JE. Histology of the human eye: an atlas and textbook.. Toronto: W.B. Saunders Company Ed; 1971. [8] Miceli MV, Newsome DA, Tate DJ,Jr, Sarphie TG. Pathologic changes in the retinal pigment epithelium and Bruch’s membrane of fat-fed atherogenic mice. Current Eye Research 20 2000 1 816. [9] Mullins RF, Russell SR, Anderson DH, Hageman GS. Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB Journal 14 2000 7 835846. [10] W. E. Connor, M. Neuringer, S. Reisbick, fatty. Essential, the. acids, importance, 3 n-3 fatty acids in the retina and brain. Nutrition Reviews 1992;50 4 2129. [11] S. W. Cousins, D. G. Espinosa-Heidmann, A. Alexandridou, J. Sall, S. Dubovy, K. Csaky, The role of aging, high fat diet and blue light exposure in an experimental mouse model for basal laminar deposit formation. Experimental Eye Research 75 2002 5 543553. [12] K. C. Hayes, S. Lindsey, Z. F. Stephan, D. Brecker, Retinal pigment epithelium possesses both LDL and scavenger receptor activity. Investigative Ophthalmology & Visual Science 30 1989 2 225232. [13] A. Amaratunga, C. R. Abraham, R. B. Edwards, J. H. Sandell, Fine. R. E. Schreiber, E. Apolipoprotein, synthesized. is, the. in, by. retina, glial. Muller, secreted. cells, the. into, vitreous, transported. rapidly, the. into, nerve. optic, retinal. by, cells. ganglion, Journal of Biological Chemistry 271 1996 10 56285632. [14] Ong JM, Zorapapel NC, Rich KA, Wagstaff RE, Lambert RW, Rosenberg SE, Moghaddas F, Pirouzmanesh A, Aoki AM, Kenney MC. Effects of cholesterol and apolipoprotein E on retinal abnormalities in ApoE-deficient mice. Investigative Ophthalmology & Visual Science 2001;42(8) 1891-1900. [15] A. Triviño, A. I. Ramírez, J. J. Salazar, R. de Hoz, B. Rojas, E. Padilla, T. Tejerina, J. M. A. Ramírez, diet. cholesterol-enriched, ultrastructural. induces, in. changes, retinal, rabbit. macroglial, cells, Experimental Eye Research 83 2006 2 357366. [16] J. J. Salazar, A. I. Ramírez, R. de Hoz, B. Rojas, E. Ruiz, T. Tejerina, A. Triviño, J. M. Ramírez, Alterations in the choroid in hypercholesterolemic rabbits: reversibility after normalization of cholesterol levels. Experimental Eye Research 84 2007 3 412422. [17] K. Cusato, A. Bosco, R. Linden, B. E. Reese, Cell death in the inner nuclear layer of the retina is modulated by BDNF. Brain research.Developmental Brain Research 139 2002 2 325330. [18] W. K. Ju, M. Y. Lee, H. D. Hofmann, M. Kirsch, M. H. Chun, of. C. N. T. F. Expression, Muller. in, of. cells, rat. the, after. retina, ischemia. pressure-induced, Neuroreport 10 1999 2 419422. [19] M. Honjo, H. Tanihara, N. Kido, M. Inatani, K. Okazaki, Y. Honda, Expression of ciliary neurotrophic factor activated by retinal Muller cells in eyes with NMDA- and kainic acid-induced neuronal death. Investigative Ophthalmology & Visual Science 41 2000 2 552560. [20] A. Rivard, J. E. Fabre, M. Silver, D. Chen, T. Murohara, M. Kearney, M. Magner, T. Asahara, J. M. Isner, Age-dependent impairment of angiogenesis. Circulation 99 1999 1 111120. [21] Wilson JX. Antioxidant defense of the brain: a role for astrocytes. Canadian Journal of Physiology and Pharmacology 1997 1149-1163. [22] C. Iadecola, Mechanisms of cerebral ischemic damage In: Walz W. (ed.) Cerebral Ischemia. Molecular and Cellular Pathophysiology. Totowa: Humana Press Inc.; 1999 332. [23] D. Liu, C. L. Smith, F. C. Barone, J. A. Ellison, P. G. Lysko, K. Li, I. A. Simpson, Astrocytic demise precedes delayed neuronal death in focal ischemic rat brain. Brain Research.Molecular Brain Research 1999 29-41. [24] R. A. Alexander, A. Garner, Elastic and precursor fibres in the normal human eye. Experimental Eye Research 36 1983 2 305315. [25] Oyster CW. The human eye. Structure and function. Sunderland (Massachusetts): Sinauer Associates; 1999. [26] Bron AJ, Tripathi RC, Tripathi BJ. The choroid and uveal vessels. In: Bron AJ, Tripathi RC, Tripathi BJ. (ed.) Wolff’s Anatomy of the Eye and Orbit (Eighth edition). London: Chapman & Hall Medical; 1997 371410. [27] Ramrattan RS, van der Schaft TL, Mooy CM, de Bruijn WC, Mulder PG, de Jong PT. Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Investigative Ophthalmology & Visual Science 35 1994 6 28572864. [28] Bird AC. Bruch’s membrane change with age. British Journal of Ophthalmology 76 1992 3 166168. [29] J. T. Handa, N. Verzijl, H. Matsunaga, A. Aotaki-Keen, G. A. Lutty, Koppele. J. M. te, T. Miyata, L. M. Hjelmeland, Increase in the advanced glycation end product pentosidine in Bruch’s membrane with age. Investigative Ophthalmology & Visual Science 40 1999 3 775779. [30] J. Marshall, Starita. C. Hussain, D. J. Moore, A. L. Patmore, Ageing and Bruch’s membrane In: Marmor MF, Wolfensberger TJ. (ed.) Retinal pigment epithelium: function and disease. New York: Oxford University Press; 1998 669692. [31] J. Hillenkamp, Jackson. T. L. Hussain, J. R. Cunningham, J. Marshall, The influence of path length and matrix components on ageing characteristics of transport between the choroid and the outer retina. Investigative ophthalmology & visual science 2004 May;45 5 14931498. [32] Green WR, Key 3 Senile macular degeneration: a histopathologic study. Transactions of The American Ophthalmological Society 1977;75180. [33] Sarks SH. Ageing and degeneration in the macular region: a clinico-pathological study. British Journal of Ophthalmology 60 1976 5 324341. [34] Sharma RK. Molecular Neurobiology of Retinal Degeneration. In: Lajtha A, Johnson D. (ed.) Handbook of Neurochemistry and Molecular Neurobiology: Sensory Neurochemistry 3 ed). New York: Springer US; 2007. 4792. [35] C. Fourgeux, A. Bron, N. Acar, C. Creuzot-Garcher, L. . Bretillon, 24S-hydroxycholesterol and cholesterol-24S-hydroxylase (CYP46A1) in the retina: from cholesterol homeostasis to pathophysiology of glaucoma. Chemistry and Physics of Lipids 164 2011 6 496-499. [36] E. A. Newman, Müller. The, In. cell, S. Federoff, A. Vernadakis, (ed, morphology. Development, specialization. regional, astrocytes. of, London: Academic Press; 1986 149171. [37] J. M. Ramírez, A. Triviño, A. I. Ramírez, J. J. Salazar, J. García-Sánchez, Immunohistochemical study of human retinal astroglia. Vision Research 34 1994 15 19351946. [38] A. Triviño, J. M. Ramírez, A. I. Ramírez, J. J. Salazar, J. García-Sánchez, Comparative study of astrocytes in human and rabbit retinae. Vision Research 37 1997 13 1707-1711. [39] B. Gallego, J. J. Salazar, R. De Hoz, B. Rojas, A. I. Ramírez, M. Salinas-Navarro, A. Ortín-Martínez, F. J. Valiente-Soriano, Trigueros. M. Avilés, M. P. Villegas-Perez, M. Vidal-Sanz, A. Triviño, J. M. I. O. P. Ramírez, upregulation. induces, G. F. A. P. of, M. H. C-ii, reactivity. microglia, mice. in, contralateral. retina, experimental. to, Journal. glaucoma, Neuroinflammation. of, 2012 in press. [40] Triviño A, Ramírez JM, Ramírez AI, Salazar JJ, García-Sánchez J. Retinal perivascular astroglia: an immunoperoxidase study. Vision research 1992;32(9) 1601-1607. [41] A. Haddad, A. I. Ramírez, E. M. Laicine, J. J. Salazar, A. Triviño, J. M. Ramírez, Immunohistochemistry in association with scanning electron microscopy for the morphological characterization and location of astrocytes of the rabbit retina. Journal of Neuroscience Methods 106 2001 2 131137. [42] A. Haddad, J. J. Salazar, E. M. Laicine, A. I. Ramírez, J. M. Ramírez, A. A. Triviño, contact. direct, astrocyte. between, body. vitreous, possible. is, the. in, eye. rabbit, to. due, in. discontinuities, basement. the, of. membrane, retinal. the, limiting. inner, membrane, Brazilian Journal of Medical and Biological Research 36 2003 2 207211. [43] J. M. Ramírez, A. Triviño, A. I. Ramírez, J. J. Salazar, Organization and function of astrocytes in human retina. In: Castellano B, Gonzalez B, Nieto-Sampedro M. (ed.) Understanding glial cells. Boston: Kluwer Academic Publishers; 1998 4762. [44] G. Tezel, Fourth. A. R. V. O. the, Ophthalmics. Pfizer, Institute. Research, Working. Conference, Group, The role of glia, mitochondria, and the immune system in glaucoma. Investigative Ophthalmology Visual Science 50 2009 3 10011012. [45] Johnson EC, Morrison JC. Friend or foe? Resolving the impact of glial responses in glaucoma. Journal of Glaucoma 18 2009 5 341353. [46] A. Triviño, A. I. Ramírez, J. J. Salazar, B. Rojas, R. De Hoz, J. M. Ramírez, Retinal changes in age-related macular degeneration. In: Ioseliane OR. (ed.) Focus on Eye Research. New York: Nova science publishers; 2005 137. [47] Zhong YS, Leung CK, Pang CP. Glial cells and glaucomatous neuropathy. Chinese Medical Journal 120 2007 4 326335. [48] Hudspeth AJ, Yee AG. The intercellular junctional complexes of retinal pigment epithelia. Investigative Ophthalmology 12 1973 5 354365. [49] Cunha-Vaz JG. The blood-ocular barriers: past, present, and future. Documenta ophthalmologica. Advances in Ophthalmology 1997 149-157. [50] M. La Cour, T. Tezel, The retinal pigment epithelium. In: Fischbarg J. (ed.) The biology of the eye. Amsterdam: Elsevier; 2006 253272. [51] SanGiovanni JP, Chew EY. The role of 3 long-chain polyunsaturated fatty acids in health and disease of the retina. Progress in Retinal and Eye Research 2005;24 1 87138. [52] H. M. Su, L. Bernardo, M. Mirmiran, X. H. Corso, T. N. Nathanielsz, P. W. Brenna, J. T. , Bioequivalence of dietary alpha-linolenic and docosahexaenoic acids as sources of docosahexaenoate accretion in brain and associated organs of neonatal baboons. Pediatric Research 45 1999 1 8793. [53] Gordon WC, Bazan NG. Retina In: Harding JJ. (ed.) Biochemistry of the Eye. London: Chapman and Hall; 1997 144275. [54] L. Bretillon, G. Thuret, S. Grégoire, N. Acar, C. Joffre, A. M. Bron, P. Gain, Creuzot-Garcher, Lipid and fatty acid profile of the retina, retinal pigment epithelium/choroid, and the lacrimal gland, and associations with adipose tissue fatty acids in human subjects. Experimental Eye Research 87 2008 6 521528. [55] Moore SA. Polyunsaturated fatty acid synthesis and release by brain-derived cells in vitro. Journal of Molecular Neuroscience 2001 195-200. [56] N. Wang, R. E. Anderson, Synthesis of docosahexaenoic acid by retina and retinal pigment epithelium. Biochemistry 32 1993 49 1370313709. [57] M. G. Wetzel, J. Li, R. A. Alvarez, R. E. Anderson, P. J. O’Brien, Metabolism of linolenic acid and docosahexaenoic acid in rat retinas and rod outer segments. Experimental Eye Research 53 1991 4 437446. [58] I. Delton-Vandenbroucke, P. Grammas, R. E. Anderson, Polyunsaturated fatty acid metabolism in retinal and cerebral microvascular endothelial cells. Journal of Lipid Research 38 1997 1 147159. [59] F. Li, H. Chen, R. E. Anderson, Biosynthesis of docosahexaenoate-containing glycerolipid molecular species in the retina. Journal of Molecular Neuroscience 2001 205-214. [60] C. Serougne, C. Lefevre, F. Chevallier, Cholesterol transfer between brain and plasma in the rat: a model for the turnover of cerebral cholesterol. Experimental Neurology 51 1976 1 229240. [61] Hussain ST, Roots BI. Effect of essential fatty acid deficiency & immunopathological stresses on blood brain barrier (B-BB) in Lewis rats: a biochemical study. Biochemical Society Transactions 1994 338S. [61] L. G. Puskas, E. Bereczki, M. Santha, L. Vigh, G. Csanadi, F. Spener, P. Ferdinandy, A. Onochy, K. Kitajka, Cholesterol and cholesterol plus DHA diet-induced gene expression and fatty acid changes in mouse eye and brain. Biochimie 86 2004 11 817824. [62] J. M. Seddon, B. Rosner, R. D. Sperduto, L. Yannuzzi, J. A. Haller, N. P. Blair, W. Willett, Dietary fat and risk for advanced age-related macular degeneration. Archives of Ophthalmology 119 2001 8 11911199. [63] L. Bretillon, N. Acar, M. W. Seeliger, M. Santos, Juaneda. P. Maire, L. Martine, S. Gregoire, C. Joffre, A. M. Bron, C. Creuzot-Garcher, B10. Apo, L. D. L. R-, exhibit. mice, electroretinographic. reduced, response, esters. cholesteryl, in. deposits, retina. the, Investigative Ophthalmology & Visual Science 49 2008 4 13071314. [64] S. J. Fliesler, L. Bretillon, The ins and outs of cholesterol in the vertebrate retina. Journal of Lipid Research 51 2010 12 33993413. [65] N. Tserentsoodol, J. Sztein, M. Campos, N. V. Gordiyenko, Lee. J. W. Fariss, S. J. Fliesler, I. R. Rodriguez, Uptake of cholesterol by the retina occurs primarily via a low density lipoprotein receptor-mediated process. Molecular Vision 121306. [66] Johnson. M. Curcio, J. Huang, M. Rudolf, age-related. Aging, degeneration. macular, response-to-retention. the, apolipoprotein. of, lipoproteins. B-containing, Progress in Retinal and Eye Research 28 2009 6 393422. [67] I. Bjorkhem, D. Lutjohann, U. Diczfalusy, L. Stahle, G. Ahlborg, J. Wahren, Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. Journal of Lipid Research 39 1998 8 15941600. [68] Lund EG, Guileyardo JM, Russell DW. cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proceedings of the National Academy of Sciences of the United States of America 96 1999 13 72387243. [69] L. Bretillon, U. Diczfalusy, I. Bjorkhem, Martine. L. Maire, C. Joffre, N. Acar, A. Bron, C. Creuzot-Garcher, Cholesterol-, . C. Y. P. S-hydroxylase, A. , specifically. is, in. expressed, of. neurons, neural. the, retina, Current Eye Research 32 2007 4 361366. [70] I. Bjorkhem, D. Lutjohann, O. Breuer, A. Sakinis, A. Wennmalm, Importance of a novel oxidative mechanism for elimination of brain cholesterol. Turnover of cholesterol and 24(S)-hydroxycholesterol in rat brain as measured with 182 techniques in vivo and in vitro. Journal of Biological Chemistry 1997;272 48 3017830184. [71] I. A. Pikuleva, A. Babiker, M. R. Waterman, I. Bjorkhem, Activities of recombinant human cytochrome 450c27 CYP27) which produce intermediates of alternative bile acid biosynthetic pathways. Journal of Biological Chemistry 1998;273(29) 18153-18160. [72] Rodriguez IR, Larrayoz IM. Cholesterol oxidation in the retina: implications 7 7KCh formation in chronic inflammation and age-related macular degeneration. Journal of Lipid Research 2010;51 10 28472862. [73] J. M. Ramírez, A. I. Ramírez, J. J. Salazar, R. de Hoz, A. Triviño, Changes of astrocytes in retinal ageing and age-related macular degeneration. Experimental Eye Research 73 2001 5 601615. [74] J. Ambati, B. K. Ambati, S. H. Yoo, S. Ianchulev, A. P. Adamis, Macular. Age-Related, Etiology. Degeneration, Pathogenesis, Strategies. Therapeutic, Survey of Ophthalmology 48 2003 3 257293. [75] S. Panda-Jonas, J. B. Jonas, M. Jakobczyk-Zmija, Retinal pigment epithelial cell count, distribution, and correlations in normal human eyes. American Journal of Ophthalmology 121 1996 2 181189. [76] Watzke RC, Soldevilla JD, Trune DR. Morphometric analysis of human retinal pigment epithelium: correlation with age and location. Current Eye Research 12 1993 2 133 -142. [77] M. Boulton, P. Moriarty, J. Jarvis-Evans, B. Marcyniuk, Regional variation and age-related changes of lysosomal enzymes in the human retinal pigment epithelium. British Journal of Ophthalmology 78 1994 2 125129. [78] Elner VM. Retinal pigment epithelial acid lipase activity and lipoprotein receptors: effects of dietary 3 fatty acids. Transactions of the American Ophthalmological Society 2002;100301. [79] Fliesler SJ, Richards MJ, Miller CY, Cenedella RJ. Cholesterol synthesis in the vertebrate retina: effects of 18666 on rat retinal structure, photoreceptor membrane assembly, and sterol metabolism and composition. Lipids 2000;35 3 289296. [80] Borrenpohl. K. Berring, S. J. Fliesler, A. B. A. Serfis, of. comparison, behavior. the, cholesterol. of, derivatives. selected, mixed. in, Langmuir. sterol-phospholipid, a. monolayers, microscopy. fluorescence, study, Chemistry and Physics of Lipids 136 2005 1 112. [81] J. M. Ramírez, A. Triviño, A. I. Ramírez, J. J. Salazar, J. García-Sánchez, Structural specializations of human retinal glial cells. Vision Research 36 1996 14 20292036. [82] R. W. Mahley, E. Apolipoprotein, transport. cholesterol, with. protein, role. expanding, cell. in, biology, Science 240 1988 4852 622630. [83] Pfrieger FW. Role of glial cells in the formation and maintenance of synapses. Brain Research Reviews 2010 39-46. [84] Brown 3 Theisler C, Silberman S, Magnuson D, Gottardi-Littell N, Lee JM, Yager D, Crowley J, Sambamurti K, Rahman MM, Reiss AB, Eckman CB, Wolozin B. Differential expression of cholesterol hydroxylases in Alzheimer’s disease. Journal of Biological Chemistry 2004;279 33 3467434681. [85] K. Atsuzawa, A. Nakazawa, K. Mizutani, M. Fukasawa, N. Yamamoto, T. Hashimoto, N. Usuda, Immunohistochemical localization of mitochondrial fatty acid beta-oxidation enzymes in Muller cells of the retina. Histochemistry and Cell Biology 134 2010 6 565579. [86] W. T. Norton, D. A. Aquino, I. Hozumi, F. C. Chiu, C. F. Brosnan, Quantitative aspects of reactive gliosis: a review. Neurochemical Research 17 1992 9 877885. [87] E. Rungger-Brandle, Leuenberger. P. M. Dosso, reactivity. Glial, early. an, of. feature, retinopathy. diabetic, Investigative Ophthalmology & Visual Science 41 2000 7 19711980. [88] N. J. Laping, B. Teter, N. R. Nichols, I. Rozovsky, Finch, Glial fibrillary acidic protein: regulation by hormones, cytokines, and growth factors. Brain Pathology 4 1994 3 259275. [89] H. Tanihara, M. Hangai, S. Sawaguchi, H. Abe, M. Kageyama, F. Nakazawa, . E. Shirasawa, Y. Honda, Up-regulation of glial fibrillary acidic protein in the retina of primate eyes with experimental glaucoma. Archives of Ophthalmology 115 1997 6 752 -756. [90] A. I. Ramírez, J. J. Salazar, R. de Hoz, B. Rojas, B. I. Gallego, M. Salinas-Navarro, L. Alarcón-Martínez, A. Ortín-Martínez, M. Avilés-Trigueros, M. Vidal-Sanz, A. Trivino, J. M. Ramírez, Quantification of the effect of different levels of IOP in the astroglia of the rat retina ipsilateral and contralateral to experimental glaucoma. Investigative Ophthalmology & Visual Science 51 2010 11 56905696. [91] M. Okada, M. Matsumura, N. Ogino, Y. Honda, Muller cells in detached human retina express glial fibrillary acidic protein and vimentin. Graefe’s Archive for Clinical and Experimental Ophthalmology 228 1990 5 467474. [92] G. P. Lewis, E. A. Chapin, G. Luna, K. A. Linberg, S. K. Fisher, The fate of Muller’s glia following experimental retinal detachment: nuclear migration, cell division, and subretinal glial scar formation. Molecular Vision 161361. [93] E. Agardh, A. Bruun, C. D. Agardh, Retinal glial cell immunoreactivity and neuronal cell changes in rats with STZ-induced diabetes. Current Eye Research 23 2001 4 276284. [94] T. Chan-Ling, J. Stone, Degeneration of astrocytes in feline retinopathy of prematurity causes failure of the blood-retinal barrier. Investigative Ophthalmology & Visual Science 33 1992 7 21482159. [95] C. J. Pournaras, E. Rungger-Brändle, Hardarson. S. H. Riva, E. Stefansson, Regulation of retinal blood flow in health and disease. Progress in Retinal and Eye Research 27 2008 3 284330. [96] A. Sierra, R. García, Epidemiología y prevención de la cardiopatía isquémica. In: Piedrola G. (ed.) Medicina preventiva y salud pública. Barcelona: Masson; 2001 663678. [97] F. Rodríguez, J. R. Banegas, P. Guallar, J. L. Gutiérrez, Enfermedad cerebrovascular e hipertensión arterial. In: Piédrola G (ed.) Medicina preventiva y salud pública. Barcelona: Masson; 2001 679688. [98] Peterson ED, Gaziano JM. Cardiology in 2011--amazing opportunities, huge challenges. JAMA 306 2011 19 21582159. [99] S. Selvarajah, J. Haniff, G. Kaur, Hiong. T. Guat, Cheong. K. Chee, C. M. Lim, M. L. Bots, Clustering of cardiovascular risk factors in a middle-income country: a call for urgency. European Journal of Preventive Cardiology in press, first published on January 242012 2012 doi:10.1177/2047487312437327 [100] R. Klein, B. E. K. Klein, S. C. Tomany, T. Y. Wong, The relation of retinal microvascular characteristics to age-related eye disease: the Beaver Dam eye study. American Journal of Ophthalmology 137 2004 3 435444. [101] Wilson. D. B. Edwards, T. E. Craven, J. Stafford, L. F. Fried, T. Y. Wong, R. Klein, G. L. Burke, K. J. Hansen, Associations between retinal microvascular abnormalities and declining renal function in the elderly population: the Cardiovascular Health Study. American Journal of Kidney Diseases 46 2005 2 214224. [102] T. Y. Wong, R. Mc Intosh, Systemic associations of retinal microvascular signs: a review of recent population-based studies. Ophthalmic and Physiological Optics 25 2005 3 195204. [103] T. Y. Wong, R. Klein, A. R. Sharrett, B. B. Duncan, D. J. Couper, J. M. Tielsch, B. E. K. Klein, L. D. Hubbard, Retinal Arteriolar Narrowing and Risk of Coronary Heart Disease in Men and Women. JAMA 287 2002 9 11531159. [104] T. Y. Wong, R. Klein, F. J. Nieto, B. E. Klein, A. R. Sharrett, S. M. Meuer, L. D. Hubbard, J. M. Tielsch, Retinal microvascular abnormalities and 10 cardiovascular mortality: a population-based case-control study. Ophthalmology 2003;110 5 933940. [105] T. Y. Wong, B. B. Duncan, S. H. Golden, R. Klein, D. J. Couper, B. E. Klein, L. D. Hubbard, A. R. Sharrett, M. I. Schmidt, Associations between the metabolic syndrome and retinal microvascular signs: the Atherosclerosis Risk In Communities study. Investigative Ophthalmology & Visual Science 45 2004 9 29492954. [106] T. Y. Wong, R. Klein, D. J. Couper, L. S. Cooper, E. Shahar, L. D. Hubbard, M. R. Wofford, A. R. Sharrett, Retinal microvascular abnormalities and incident stroke: the Atherosclerosis Risk in Communities Study. Lancet 358 2001 9288 11341140. [107] T. Y. Wong, R. Klein, A. R. Sharrett, D. J. Couper, B. E. K. Klein, D. Liao, L. D. Hubbard, T. H. Mosley, the. A. R. I. C. for, Investigators, Cerebral White Matter Lesions, Retinopathy, and Incident Clinical Stroke. JAMA 288 2002 1 6774. [108] M. M. P. C. Donners, S. Heeneman, M. J. A. P. Daemen, Models of atherosclerosis and transplant arteriosclerosis: the quest for the best. Drug Discovery Today: Disease Models 1 2004 3 257263 . [109] S. Zadelaar, R. Kleemann, L. Verschuren, Weij. J. de Vries der, J. van der Hoorn, H. M. Princen, T. Kooistra, Mouse Models for Atherosclerosis and Pharmaceutical Modifiers. Arteriosclerosis, Thrombosis, and Vascular Biology 27 2007 8 17061721. [110] Y. Nakashima, Raines. E. W. Plump, J. L. Breslow, R. Ross, Apo, ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arteriosclerosis and Thrombosis 14 1994 1 133140. [111] J. Jawien, The role of an experimental model of atherosclerosis: apoE-knockout mice in developing new drugs against atherogenesis. Current Pharmaceutical Biotechnology 2012Ja Jan 20 [Epub ahead of print]. PMID:22280417 [112] J. Davignon, E. Apolipoprotein, beyond. atherosclerosis, effect. lipid, Thrombosis. Arteriosclerosis, Biology. Vascular, 25 2005 2 267269. [113] K. Ali, M. Middleton, E. Pure, D. J. Rader, E. Apolipoprotein, the. suppresses, I. type, response. inflammatory, vivo. in, Circulation Research 97 2005 9 922927. [114] D. J. Grainger, J. Reckless, E. Mc Killigin, E. Apolipoprotein, clearance. modulates, apoptotic. of, in. bodies, vitro, vivo. in, in. a. resulting, proinflammatory. systemic, in. state, E-deficient. apolipoprotein, mice, Journal of Immunology 173 2004 10 63666375. [115] J. W. Knowles, N. Maeda, Genetic modifiers of atherosclerosis in mice. Arteriosclerosis, Thrombosis, and Vascular Biology 20 2000 11 23362345. [116] S. Ishibashi, J. L. Goldstein, Herz. J. Brown, D. K. Burns, Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. Journal of Clinical Investigation 93 1994 5 18851893. [117] B. J. van Vlijmen, Maagdenberg. A. M. van den, Boom. H. Gijbels der, Esch. H. Hogen, R. R. Frants, M. H. Hofker, L. M. Havekes, Diet-induced hyperlipoproteinemia and atherosclerosis in apolipoprotein E3-Leiden transgenic mice. Journal of Clinical Investigation 93 1994 4 14031410. [118] L. Jacobsson, Comparison of experimental hypercholesterolemia and atherosclerosis in Gottingen mini-pigs and Swedish domestic swine. Atherosclerosis 59 1986 2 205213. [119] R. Kamimura, N. Miura, S. Suzuki, The hemodynamic effects of acute myocardial ischemia and reperfusion in Clawn miniature pigs. Experimental Animal 52 2003 4 335338. [120] J. R. Turk, K. K. Henderson, G. D. Vanvickle, J. Watkins, M. H. Laughlin, Arterial endothelial function in a porcine model of early stage atherosclerotic vascular disease. International Journal of Experimental Pathology 86 2005 5 335345. [121] Y. Liang, H. Zhu, M. H. Friedman, The correspondence between coronary arterial wall strain and histology in a porcine model of atherosclerosis. Physics in Medicine and Biology 54 2009 18 56255641. [122] T. Thim, Human-like atherosclerosis in minipigs: a new model for detection and treatment of vulnerable plaques. Danish Medical Bulletin 2010 B4161. [123] N. Miyoshi, M. Horiuchi, Y. Inokuchi, Y. Miyamoto, N. Miura, S. Tokunaga, M. Fujiki, Y. Izumi, H. Miyajima, R. Nagata, K. Misumi, T. Takeuchi, A. Tanimoto, et al. Novel microminipig model of atherosclerosis by high fat and high cholesterol diet, established in Japan. In Vivo 24 2010 5 671680. [124] H. Kawaguchi, N. Miyoshi, N. Miura, M. Fujiki, M. Horiuchi, Y. Izumi, H. Miyajima, R. Nagata, K. Misumi, T. Takeuchi, A. Tanimoto, H. Yoshida, a. Microminipig, experimental. non-rodent, optimized. animal, life. for, research:novel. science, model. atherosclerosis, by. induced, fat. high, diet. cholesterol, Journal of Pharmacological Sciences 115 2011 2 115121. [125] L. Fang, R. Harkewicz, K. Hartvigsen, P. Wiesner, S. H. Choi, F. Almazan, J. Pattison, E. Deer, T. Sayaphupha, E. A. Dennis, J. L. Witztum, S. Tsimikas, Y. I. Miller, Oxidized cholesteryl esters and phospholipids in zebrafish larvae fed a high cholesterol diet: macrophage binding and activation. Journal of Biological Chemistry 285 2010 42 3234332351 . [126] L. Fang, S. R. Green, J. S. Baek, S. H. Lee, F. Ellett, E. Deer, G. J. Lieschke, J. L. Witztum, S. Tsimikas, Y. I. Miller, In vivo visualization and attenuation of oxidized lipid accumulation in hypercholesterolemic zebrafish. Journal of Clinical Investigation 121 2011 12 48614869. [127] K. Stoletov, L. Fang, S. H. Choi, K. Hartvigsen, L. F. Hansen, C. Hall, J. Pattison, J. Juliano, E. R. Miller, F. Almazan, P. Crosier, J. L. Witztum, R. L. Klemke, et al.lipid. Vascular, lipoprotein. accumulation, oxidation, lipid. macrophage, in. uptake, zebrafish. hypercholesterolemic, Circulation Research 104 2009 8 952960. [128] A. Daugherty, Schonfeld. G. Zweifel, Probucol attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. British Journal of Pharmacology 98 1989 2 612618. [129] M. Del Rio, T. Chulia, A. Merchan-Perez, M. Remezal, S. Valor, J. Gonzalez, J. A. Gutierrez, J. A. Contreras, Tejerina. T. Lasuncion, Effects of indapamide on atherosclerosis development in cholesterol-fed rabbits. Journal of Cardiovascular Pharmacology 25 1995 6 973978. [130] Huff MW, Carroll KK. Effects of dietary protein on turnover, oxidation, and absorption of cholesterol, and on steroid excretion in rabbits. Journal of Llipid Research 21 1980 5 546548. [131] H. Zauberman, N. Livni, Experimental vascular occlusion in hypercholesterolemic rabbits. Investigative Ophthalmology & Visual Science 21 1981 2 248255. [132] Redgrave TG, Dunne KB, Roberts DCK, West CE. Chylomicron metabolism in rabbits fed diets with or without added cholesterol. Atherosclerosis 24 1976 3 501508. [133] S. Crispin, Ocular lipid deposition and hyperlipoproteinaemia. Progress in Retinal and Eye Research 21 2002 2 169224. [134] Chapman MJ. Animal lipoproteins: chemistry, structure, and comparative aspects. Journal of Lipid Research 21 1980 7 789853. [135] Roth RI, Gaubatz JW, Gotto AM,Jr, Patsch JR. Effect of cholesterol feeding on the distribution of plasma lipoproteins and on the metabolism of apolipoprotein E in the rabbit. Journal of Lipid Research 24 1983 1 111. [136] P. Holm, H. L. Andersen, G. Arroe, S. Stender, Gender gap in aortic cholesterol accumulation in cholesterol-clamped rabbits: role of the endothelium and mononuclear-endothelial cell interaction. Circulation 98 1998 24 27312737. [137] D. Ponraj, J. Makjanic, P. S. Thong, B. K. Tan, F. Watt, The onset of atherosclerotic lesion formation in hypercholesterolemic rabbits is delayed by iron depletion. FEBS letters 459 1999 2 218222. [138] M. Hanyu, N. Kume, T. Ikeda, M. Minami, T. Kita, M. V. C. A. Komeda, 1 expression precedes macrophage infiltration into subendothelium of vein grafts interposed into carotid arteries in hypercholesterolemic rabbits--a potential role in vein graft atherosclerosis. Atherosclerosis 2001;158 2 313319. [139] Y. Chen, Y. Chang, Jiang. M. Jyh, chemotactic. Monocyte, protein, gene, expression. protein, atherogenesis. in, hypercholesterolemic. of, rabbits, Atherosclerosis 143 1999 1 115123 . [140] D. B. Schneider, G. Vassalli, S. Wen, R. M. Driscoll, A. B. Sassani, M. B. De Young, R. Linnemann, R. Virmani, D. A. Dichek, Expression of Fas Ligand in Arteries of Hypercholesterolemic Rabbits Accelerates Atherosclerotic Lesion Formation. Arteriosclerosis, Thrombosis, and Vascular Biology 20 2000 2 298308. [141] J. Kálmán, B. J. Kudchodkar, R. Krishnamoorthy, L. Dory, A. G. Lacko, N. Agarwal, High cholesterol diet down regulates the activity of activator protein-1 but not nuclear factor-kappa B in rabbit brain. Life Sciences 68 2001 13 14951503. [142] de la Peña NC, Sosa-Melgarejo JA, Ramos RR, Méndez JD. Inhibition of platelet aggregation by putrescine, spermidine, and spermine in hypercholesterolemic rabbits. Archives of Medical Research 31 2000 6 546550. [143] K. Öörni, M. O. Pentikäinen, M. Ala-Korpela, P. T. Kovanen, fusion. Aggregation, formation. vesicle, modified. of, density. low, particles. lipoprotein, mechanisms. molecular, on. effects, interactions. matrix, Journal of Lipid Research 41 2000 11 17031714. [144] J. Francois, A. Neetens, Vascular manifestations of experimental hypercholesteraemia in rabbits. Angiologica 3 1966 1 120. [145] A. Sebesteny, G. A. Sheraidah, D. J. Trevan, R. A. Alexander, A. I. Ahmed, Lipid keratopathy and atheromatosis in an SPF laboratory rabbit colony attributable to diet. Laboratory Animals 19 1985 3 180188. [146] B. Rojas, A. I. Ramírez, J. J. Salazar, R. de Hoz, A. Redondo, R. Raposo, T. Mendez, T. Tejerina, A. Trivino, J. M. Ramírez, Low-dosage statins reduce choroidal damage in hypercholesterolemic rabbits. Acta Ophthalmologica 89 2011 7 660669. [147] M. Shibata, T. Sugiyama, M. Hoshiga, J. Hotchi, T. Okuno, H. Oku, T. Hanafusa, T. Ikeda, Changes in optic nerve head blood flow, visual function, and retinal histology in hypercholesterolemic rabbits. Experimental Eye Research 93 2011 6 818824. [148] J. X. Rong, L. Shen, Y. H. Chang, A. Richters, H. N. Hodis, A. Sevanian, Cholesterol Oxidation Products Induce Vascular Foam Cell Lesion Formation in Hypercholesterolemic New Zealand White Rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology 19 1999 9 21792188. [149] T. Yamamoto, R. W. Bishop, Goldstein. J. L. Brown, D. W. Russell, Deletion in cysteine-rich region of LDL receptor impedes transport to cell surface in WHHL rabbit. Science 232 1986 4755 12301237. [150] M. Shiomi, T. Ito, The Watanabe heritable hyperlipidemic (WHHL) rabbit, its characteristics and history of development: A tribute to the late Dr. Yoshio Watanabe. Atherosclerosis 207 2009 1 17. [151] Y. Watanabe, Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL-rabbit). Atherosclerosis 36 1980 2 261268. [152] H. Steen, J. A. Lima, S. Chatterjee, A. Kolmakova, F. Gao, E. R. Rodriguez, M. Stuber, High-resolution three-dimensional aortic magnetic resonance angiography and quantitative vessel wall characterization of different atherosclerotic stages in a rabbit model. Investigative Radiology 42 2007 9 614621. [153] M. Ogawa, S. Ishino, T. Mukai, D. Asano, N. Teramoto, H. Watabe, N. Kudomi, M. Shiomi, Y. Magata, H. Iida, H. Saji, (1, F. -F, D. G. accumulation, atherosclerotic. in, immunohistochemical. plaques, P. E. T. imaging, study, Journal of Nuclear Medicine 45 2004 7 12451250. [154] A. Iwata, S. Miura, S. Imaizumi, B. Zhang, K. Saku, Measurement of atherosclerotic plaque volume in hyperlipidemic rabbit aorta by intravascular ultrasound. Journal of Cardiology 50 2007 4 229234. [155] K. Yamakawa, I. A. Bhutto, Z. Lu, Y. Watanabe, T. Amemiya, Retinal vascular changes in rats with inherited hypercholesterolemia--corrosion cast demonstration. Current Eye Research 22 2001 4 258265. [156] M. Kouchi, Y. Ueda, H. Horie, K. Tanaka, Ocular lesions in Watanabe heritable hyperlipidemic rabbits. Veterinary Ophthalmology 9 2006 3 145148. [157] A. I. Ramírez, J. J. Salazar, R. de Hoz, B. Rojas, E. Ruiz, T. Tejerina, J. M. Ramírez, A. Triviño, Macroglial and retinal changes in hypercholesterolemic rabbits after normalization of cholesterol levels. Experimental Eye Research 83 2006 6 14231438. [158] R. J. Torres, M. Maia, D. B. Precoma, L. Noronha, A. Luchini, L. B. Precoma, G. K. Souza, C. Muccioli, Evaluation of early abnormalities of the sensory retina in a hypercholesterolemia experimental model: an immunohistochemical study. Arquivos Brasileiros de Oftalmologia 72 2009 6 793798. [159] Millican. C. L. Curcio, T. Bailey, H. S. Kruth, Accumulation of cholesterol with age in human Bruch’s membrane. Investigative Ophthalmology & Visual Science 42 2001 1 265274 . [160] Presley. J. B. Curcio, G. Malek, N. E. Medeiros, D. V. Avery, H. S. Kruth, Esterified and unesterified cholesterol in drusen and basal deposits of eyes with age-related maculopathy. Experimental Eye Research 81 2005 6 731741 . [161] D. J. Moore, Marshall. J. Hussain, Age-related variation in the hydraulic conductivity of Bruch’s membrane. Investigative ophthalmology & Visual Science 36 1995 7 12901297. [162] C. Starita, Pagliarini. S. Hussain, J. Marshall, Hydrodynamics of ageing Bruch’s membrane: implications for macular disease. Experimental Eye Research 62 1996 5 565572. [163] N. Gordiyenko, M. Campos, J. W. Lee, Sztein. J. Fariss, I. R. R. P. E. Rodriguez, internalize. cells, lipoprotein. . L. D. L. low-density, L. D. L. oxidized, L. D. L. (ox, large. in, in. quantities, vitro, vivo. in, Investigative Ophthalmology & Visual Science 45 2004 8 28222829. [164] Curcio CA, Millican CL. Basal linear deposit and large drusen are specific for early age-related maculopathy. Archives of Ophthalmology 117 1999 3 329339. [165] Green WR. Histopathology of age-related macular degeneration. Molecular Vision 1999 27. [166] E. M. Wexler, O. Berkovich, S. Nawy, Role of the low-affinity NGF receptor 75 75 in survival of retinal bipolar cells. Visual Neuroscience 1998;15(2) 211-218. [167] Sarthy V, Ripps H. The Retinal Müller Cell: Structure and Function. New York: Kluwer Academic Publishers NY; 2001. [168] Erickson PA, Fisher SK, Anderson DH, Stern WH, Borgula GA. Retinal detachment in the cat: the outer nuclear and outer plexiform layers. Investigative Ophthalmology & Visual Science 24 1983 7 927942. [169] M. B. Guerin, M. Donovan, D. P. Mc Kernan, C. J. O’Brien, T. G. Cotter, Age-dependent rat retinal ganglion cell susceptibility to apoptotic stimuli: implications for glaucoma. Clinical & Experimental Ophthalmology 39 2011 3 243251. [170] Tyler NK, Burns MS. Alterations in glial cell morphology and glial fibrillary acidic protein expression in urethane-induced retinopathy. Investigative Ophthalmology & Visual Science 32 1991 2 246256. [171] Y. Murabe, Y. Ibata, Y. Sano, Morphological studies on neuroglia. IV. Proliferative response of non-neuronal elements in the hippocampus of the rat to kainic acid-induced lesions. Cell and Tissue Research 222 1982 1 223226. [172] Lindsey RM. Reactive gliosis In: Fedoroff S, Vernadakis A. (ed.) Astrocytes, Orlando: Academic Press; 1986. p231-262. [173] F. Baskin, G. M. Smith, J. A. Fosmire, Altered. Rosenberg, E. apolipoprotein, in. secretion, treated. cytokine, astrocyte. human, cultures, Journal of the Neurological Sciences 148 1997 1 1518. [174] C. Goritz, D. H. Mauch, F. W. Pfrieger, Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron. Molecular and Cellular Neurosciences 29 2005 2 190201. [175] H. Kettenmann, A. Faissener, J. Trotter, Neuron-glia interactions in homeostasis and degeneration. In: Greger R and Windhorst U. (ed.) Comprehensive Human Physiology. From cellular mechanisms to integration. Berlin: Springer-Verl; 1996 533543. [176] M. Nieto-Sampedro, E. Verdú, Lesiones del sistema nervioso: respuesta neuronal y reparación. In: Delgado JM, Ferrús A, Mora F, Rubia FJ. (ed.) Manual de neurociencia. Madrid: Síntesis S.A.; 1998 929969. [177] Boulton. Winkler, Sternberg. P. Gottsch, Oxidative damage and age-related macular degeneration. Molecular Vision 1999 32. [178] Malinow MR. Experimental models of atherosclerosis regression. Atherosclerosis 48 1983 2 105118. [179] Lusis AJ. Atherosclerosis. Nature 2000;407(6801) 233-241. [180] Y. Saso, K. Kitamura, A. Yasoshima, H. O. Iwasaki, K. Takashima, K. Doi, T. Morita, Rapid induction of atherosclerosis in rabbits. Histology and Histopathology 7 1992 3 315320. [181] A. Bringmann, T. Pannicke, J. Grosche, M. Francke, P. Wiedemann, S. N. Skatchkov, N. N. Osborne, A. Reichenbach, Muller cells in the healthy and diseased retina. Progress in Retinal and Eye Research 25 2006 4 397424. [182] T. Pannicke, O. Uckermann, I. Iandiev, P. Wiedemann, A. Reichenbach, A. Bringmann, Ocular inflammation alters swelling and membrane characteristics of rat Muller glial cells. Journal of Neuroimmunology 2005 145-154. [182] Ridet J, Privat A. Reactive astrocytes, their roles in CNS injury, and repair mechanisms. Advances in Structural Biology: JAI. p147-185. [183] Reier PJ. Gliosis following CNS injury: The anatomy of astrocytic scars and their influences on axonal elongation. In: Fedoroff S, Vernadakis A, editors. Astrocytes Orlando: Academic. Press; 1996 263324 . [184] Penfold PL, Provis JM. Cell death in the development of the human retina: phagocytosis of pyknotic and apoptotic bodies by retinal cells. Graefe’s archive for clinical and experimental ophthalmology 224 1986 6 549553. [185] T. Mano, D. G. Puro, Phagocytosis by human retinal glial cells in culture. Investigative Ophthalmology & Visual Science 31 1990 6 10471055. [186] Cook RD, Wisniewski HM. The role of oligodendroglia and astroglia in Wallerian degeneration of the optic nerve. Brain Research 61191.