Una aproximación ontológica al modelado de conocimiento en los dominios de planificación
Loading...
Download
Official URL
Full text at PDC
Publication date
2010
Defense date
27/05/2010
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Complutense de Madrid, Servicio de Publicaciones
Citation
Abstract
Históricamente la comunidad de planificación ha concentrado sus esfuerzos
en la creación de potentes algoritmos de búsqueda para resolver problemas
en dominios muy sencillos en los que se usa muy poco conocimiento. Sin
embargo, cuando intentamos utilizar técnicas de planificación para resolver
problemas del mundo real nos encontrarnos con dominios ricos en conocimiento,
difíciles de modelar y con gran cantidad de información asociada.
En este tipo de dominios surgen nuevos problemas relacionados con la adquisición
y gestión de grandes bases de conocimiento.
Nuestra propuesta consiste en utilizar ontologías para modelar el conocimiento
de carácter estático asociado a estos dominios. En concreto, nos
centraremos en un tipo de ontologías con una base formal bien fundada (las
lógicas descriptivas) que ofrecen un buen compromiso entre expresividad y
complejidad computacional. Además, estas ontologías son uno de los pilares
fundamentales de la web semántica, por lo que existe toda la infraestructura
montada a su alrededor de la que podemos aprovecharnos: lenguajes estándar,
editores visuales, sistemas de razonamiento, etc. Uno de los objetivos
de este trabajo consiste en estudiar qué pueden aportar las ontologías y toda
esta infraestructura montada a su alrededor al modelado del conocimiento
asociado a los dominios de planificación.
Por otra parte, las ontologías proporcionan un vocabulario rico con el que
poder expresar conocimiento usando distintos niveles de detalle. Esta capacidad
de razonamiento abstracto permite realizar inferencias interesantes a
partir del conocimiento disponible. Además, permite plantear problemas de
planificación abstractos cuyas soluciones pueden aplicarse a multitud de problemas
concretos, algo que resulta especialmente interesante en aproximaciones
basadas en casos. En este trabajo también investigaremos cómo podemos
aprovechar la capacidad de razonamiento a distintos niveles de abstracción
de las lógicas descriptivas.
Description
Tesis de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Ingeniería del Software e Inteligencia Artificial, leída el 27-05-2010