Addition of Olive Leaf Extract to a Mixture of Algae and Extra Virgin Olive Oils Decreases Fatty Acid Oxidation and Synergically Attenuates Age-Induced Hypertension, Sarcopenia and Insulin Resistance in Rats
Loading...
Official URL
Full text at PDC
Publication date
2021
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
MPDI
Citation
González Hedström, D., Fuente Fernández, M., Priego Cuadra, T. et al. «Addition of Olive Leaf Extract to a Mixture of Algae and Extra Virgin Olive Oils Decreases Fatty Acid Oxidation and Synergically Attenuates Age-Induced Hypertension, Sarcopenia and Insulin Resistance in Rats». Antioxidants, vol. 10, n.o 7, julio de 2021, p. 1066. DOI.org (Crossref), https://doi.org/10.3390/antiox10071066.
Abstract
Olive-derived products, such as virgin olive oil (EVOO) and/or olive leaf extracts (OLE), exert anti-inflammatory, insulin-sensitizing and antihypertensive properties and may be useful for stabilizing omega 3 fatty acids (n-3 PUFA) due to their high content in antioxidant compounds. In this study, the addition of OLE 4:0.15 (w/w) to a mixture of algae oil (AO) rich in n-3 PUFA and EVOO (25:75, w/w) prevents peroxides formation after 12 months of storage at 30 °C. Furthermore, the treatment with the oil mixture (2.5 mL/Kg) and OLE (100 mg/Kg) to 24 month old Wistar rats for 21 days improved the lipid profile, increased the HOMA-IR and decreased the serum levels of miRNAs 21 and 146a. Treatment with this new nutraceutical also prevented age-induced insulin resistance in the liver, gastrocnemius and visceral adipose tissue by decreasing the mRNA levels of inflammatory and oxidative stress markers. Oil mixture + OLE also attenuated the age-induced alterations in vascular function and prevented muscle loss by decreasing the expression of sarcopenia-related markers. In conclusion, treatment with a new nutraceutical based on a mixture of EVOO, AO and OLE is a useful strategy for improving the stability of n-3 PUFA in the final product and to attenuate the cardiometabolic and muscular disorders associated with aging.