Publication:
Role of neuronal voltage‐gated K+ channels in the modulation of the nitrergic neurotransmission of the pig urinary bladder neck

Research Projects
Organizational Units
Journal Issue
Abstract
Background and purpose: As nitric oxide (NO) plays an essential role in the inhibitory neurotransmission of the bladder neck of several species, the current study investigates the mechanisms underlying the NO‐induced relaxations in the pig urinary bladder neck.Experimental approach:Urothelium‐denuded bladder neck strips were dissected and mounted in isolated organ baths containing a physiological saline solution at 37 °C and continuously gassed with 5% CO2and 95% O2, for isometric force recording. The relaxations to transmural nerve stimulation (EFS), or to exogenously applied acidified NaNO solution were carried out on strips pre‐contracted with phenylephrine, and treated with guanethidine and atropine, to block noradrenergic neurotransmission and muscarinic receptors, respectively.Key results:EFS (0.2–1 Hz) and addition of acidified NaNO solution (1 μM–1 mM) evoked frequency‐ and concentration‐dependent relaxations, respectively. These responses were potently reduced by the blockade of guanylate cyclase and were not modified by the K+ channel blockers iberiotoxin, charybdotoxin, apamin or glibenclamide. The voltage‐gated K+ (Kv) channels inhibitor 4‐aminopyridine, greatly enhanced the nitrergic relaxations evoked by EFS, but did not affect the NaNO2 solution‐induced relaxations.Conclusions and implications:NO, whose release is modulated by pre‐junctional Kv channels, relaxes the pig urinary bladder neck through a mechanism dependent on the activation of guanylate cyclase, in which post‐junctional K+ channels do not seem to be involved. Modulation of Kv channels could be useful in the therapy of the urinary incontinence produced by intrinsic sphincteric deficiency.
Description
Keywords
Citation
Collections