The electromagnetic dark sector

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Elsevier Science BV
Google Scholar
Research Projects
Organizational Units
Journal Issue
We consider electromagnetic field quantization in an expanding universe We find that the covariant (Gupta Bleuler) method exhibits certain difficulties when trying to impose the quantum Lorenz condition on cosmological scales. We thus explore the possibility of consistently quantizing without imposing such a condition In this case there are three physical stares, which are the two transverse polarizations of the massless photon and a new massless scalar mode coming from the temporal and longitudinal components of the electromagnetic field An explicit example in de Sitter space-time shows that it is still possible to eliminate the negative norm state and to ensure the positivity of the energy in this theory The new state is decoupled from the conserved electromagnetic currents. but is non-conformally coupled to gravity and therefore can be excited from vacuum fluctuations by the expanding background The cosmological evolution ensures that the new state modifies Maxwell's equations in a totally negligible way on sub-Hubble scales. However, on cosmological scales it can give rise to a non-negligible energy density which could explain in a natural way the present phase of accelerated expansion of the universe.
© 2014 Elsevier B.V. This work has been supported by Ministerio de Ciencia e Innovación (Spain) project numbers FIS 2008-01323 and FPA 2008- 00592, UCM-Santander PR34/07-15875, CAM/UCM 910309 and MEC grant BES-2006-12059.
Unesco subjects
[1] S. Perlmutter, et al., Astrophys. J. 517 (1999) 565; A.G. Riess, et al., Astron. J. 116 (1998) 1009; A.G. Riess, et al., Astron. J. 117 (1999) 707; D.N. Spergel, et al., Astrophys. J. Suppl. 148 (2003) 175, astro-ph/0603449; M. Tegmark, et al., Phys. Rev. D 69 (2004) 103501. [2] S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner, Phys. Rev. D 70 (2004) 043528; G. Dvali, G. Gabadadze, M. Porrati, Phys. Lett. B 485 (2000) 208. [3] V.V. Kiselev, Class. Quantum Grav. 21 (2004) 3323; C. Armendariz-Picon, JCAP 0407 (2004) 007; J. Beltrán Jiménez, A.L. Maroto, Phys. Rev. D 78 (2008) 063005, arXiv:0807.2528 [astro-ph]; T. Koivisto, D.F. Mota, JCAP 0808 (2008) 021; K. Bamba, S. Nojiri, S.D. Odintsov, Phys. Rev. D 77 (2008) 123532. [4] D. Grasso, H.R. Rubinstein, Phys. Rep. 348 (2001) 163. [5] A. Higuchi, L. Parker, Y. Wang, Phys. Rev. D 42 (1990) 4078. [6] S. Deser, Ann. Inst. Henri Poincaré 16 (1972) 79. [7] J. Beltrán Jiménez, A.L. Maroto, JCAP 0903 (2009) 016, arXiv:0811.0566 [astroph]. [8] C. Itzykson, J.B. Zuber, Quantum Field Theory, McGraw Hill, 1980; N.N. Bogoliubov, D.V. Shirkov, Introduction to the Theory of Quantized Fields, Interscience Publishers, Inc., 1959. [9] N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space, Cambridge, 1982. [10] M.J. Pfenning, Phys. Rev. D 65 (2002) 024009 [11] T. Kugo, I. Ojima, Phys. Lett. B 73 (1978) 459. [12] S.L. Adler, J. Lieberman, Y.J. Ng, Annals Phys. 106 (1977) 279; B.S. DeWitt, R.W. Brehme, Annals Phys. 9 (1960) 220. [13] M.R. Brown, A.C. Ottewill, Phys. Rev. D 34 (1986) 1776. [14] Michael S. Turner, Lawrence M. Widrow, Phys. Rev. D 37 (1988) 2743. [15] A.S. Goldhaber, M.M. Nieto, arXiv:0809.1003 [hep-ph]. [16] J. Beltrán Jiménez, A.L. Maroto, JCAP 0902 (2009) 025, arXiv:0811.0784 [astroph]; J. Beltrán Jiménez, A.L. Maroto, arXiv:0812.1970 [astro-ph]. [17] S. Pokorski, Gauge Field Theories, Cambridge, 2000.