Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The electromagnetic dark sector

dc.contributor.authorLópez Maroto, Antonio
dc.contributor.authorBeltrán Jiménez, José
dc.date.accessioned2023-06-20T03:42:40Z
dc.date.available2023-06-20T03:42:40Z
dc.date.issued2010-03-22
dc.description© 2014 Elsevier B.V. This work has been supported by Ministerio de Ciencia e Innovación (Spain) project numbers FIS 2008-01323 and FPA 2008- 00592, UCM-Santander PR34/07-15875, CAM/UCM 910309 and MEC grant BES-2006-12059.
dc.description.abstractWe consider electromagnetic field quantization in an expanding universe We find that the covariant (Gupta Bleuler) method exhibits certain difficulties when trying to impose the quantum Lorenz condition on cosmological scales. We thus explore the possibility of consistently quantizing without imposing such a condition In this case there are three physical stares, which are the two transverse polarizations of the massless photon and a new massless scalar mode coming from the temporal and longitudinal components of the electromagnetic field An explicit example in de Sitter space-time shows that it is still possible to eliminate the negative norm state and to ensure the positivity of the energy in this theory The new state is decoupled from the conserved electromagnetic currents. but is non-conformally coupled to gravity and therefore can be excited from vacuum fluctuations by the expanding background The cosmological evolution ensures that the new state modifies Maxwell's equations in a totally negligible way on sub-Hubble scales. However, on cosmological scales it can give rise to a non-negligible energy density which could explain in a natural way the present phase of accelerated expansion of the universe.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovacion (Spain)
dc.description.sponsorshipUCM-Santander
dc.description.sponsorshipCAM/UCM
dc.description.sponsorshipMEC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26236
dc.identifier.doi10.1016/j.physletb.2010.02.038
dc.identifier.issn0370-2693
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.physletb.2010.02.038
dc.identifier.relatedurlhttp://arxiv.org/abs/0903.4672
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44296
dc.journal.titlePhysics Letters B
dc.language.isoeng
dc.page.final180
dc.page.initial175
dc.publisherElsevier Science BV
dc.relation.projectIDFIS 2008-01323
dc.relation.projectIDFPA 2008-00592
dc.relation.projectIDPR34/07-15875
dc.relation.projectIDCAM/UCM 910309
dc.relation.projectIDBES-2006-12059
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordCosmological Parameters
dc.subject.keywordSupernovae
dc.subject.keywordSpace
dc.subject.keywordWmap
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleThe electromagnetic dark sector
dc.typejournal article
dc.volume.number686
dcterms.references[1] S. Perlmutter, et al., Astrophys. J. 517 (1999) 565; A.G. Riess, et al., Astron. J. 116 (1998) 1009; A.G. Riess, et al., Astron. J. 117 (1999) 707; D.N. Spergel, et al., Astrophys. J. Suppl. 148 (2003) 175, astro-ph/0603449; M. Tegmark, et al., Phys. Rev. D 69 (2004) 103501. [2] S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner, Phys. Rev. D 70 (2004) 043528; G. Dvali, G. Gabadadze, M. Porrati, Phys. Lett. B 485 (2000) 208. [3] V.V. Kiselev, Class. Quantum Grav. 21 (2004) 3323; C. Armendariz-Picon, JCAP 0407 (2004) 007; J. Beltrán Jiménez, A.L. Maroto, Phys. Rev. D 78 (2008) 063005, arXiv:0807.2528 [astro-ph]; T. Koivisto, D.F. Mota, JCAP 0808 (2008) 021; K. Bamba, S. Nojiri, S.D. Odintsov, Phys. Rev. D 77 (2008) 123532. [4] D. Grasso, H.R. Rubinstein, Phys. Rep. 348 (2001) 163. [5] A. Higuchi, L. Parker, Y. Wang, Phys. Rev. D 42 (1990) 4078. [6] S. Deser, Ann. Inst. Henri Poincaré 16 (1972) 79. [7] J. Beltrán Jiménez, A.L. Maroto, JCAP 0903 (2009) 016, arXiv:0811.0566 [astroph]. [8] C. Itzykson, J.B. Zuber, Quantum Field Theory, McGraw Hill, 1980; N.N. Bogoliubov, D.V. Shirkov, Introduction to the Theory of Quantized Fields, Interscience Publishers, Inc., 1959. [9] N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space, Cambridge, 1982. [10] M.J. Pfenning, Phys. Rev. D 65 (2002) 024009 [11] T. Kugo, I. Ojima, Phys. Lett. B 73 (1978) 459. [12] S.L. Adler, J. Lieberman, Y.J. Ng, Annals Phys. 106 (1977) 279; B.S. DeWitt, R.W. Brehme, Annals Phys. 9 (1960) 220. [13] M.R. Brown, A.C. Ottewill, Phys. Rev. D 34 (1986) 1776. [14] Michael S. Turner, Lawrence M. Widrow, Phys. Rev. D 37 (1988) 2743. [15] A.S. Goldhaber, M.M. Nieto, arXiv:0809.1003 [hep-ph]. [16] J. Beltrán Jiménez, A.L. Maroto, JCAP 0902 (2009) 025, arXiv:0811.0784 [astroph]; J. Beltrán Jiménez, A.L. Maroto, arXiv:0812.1970 [astro-ph]. [17] S. Pokorski, Gauge Field Theories, Cambridge, 2000.
dspace.entity.typePublication
relation.isAuthorOfPublicatione14691a1-d3b0-47b7-96d5-24d645534471
relation.isAuthorOfPublication.latestForDiscoverye14691a1-d3b0-47b7-96d5-24d645534471

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
MarotoAL19.pdf
Size:
187.8 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
MarotoAL19preprint.pdf
Size:
167.13 KB
Format:
Adobe Portable Document Format

Collections