Publication:
Absence of extended states in a ladder model of DNA

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2007-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We consider a ladder model of DNA for describing carrier transport in a fully coherent regime through finite segments. A single orbital is associated to each base, and both interstrand and intrastrand overlaps are considered within the nearest-neighbor approximation. Conduction through the sugar-phosphate backbone is neglected. We study analytically and numerically the spatial extend of the corresponding states by means of the Landauer and Lyapunov exponents. We conclude that intrinsic-DNA correlations, arising from the natural base pairing, does not suffice to observe extended states, in contrast to previous claims.
Description
© 2007 The American Physical Society. Work at Madrid was supported by MEC Project FIS2006-01485. D.S. and A.S. acknowledges INTAS grant 03-51-5460 for partial financial support.
Unesco subjects
Keywords
Citation
1. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979). 2. D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Nature London 403, 635 (2000). 3. P. Carpena, P. Bernaola-Galván, P. Ch. Ivanov, and H. E. Stanley, Nature London 418, 955 2002; 421, 764 (2003). 4. S. Roche, Phys. Rev. Lett. 91, 108101 (2003). 5. S. Roche, D. Bicout, E. Maciá, and E. Kats, Phys. Rev. Lett. 91, 228101 (2003). 6. M. Unge and S. Stafstrom, Nano Lett. 3, 1417 (2003). 7. 3 S. Roche and E. Maciá, Mod. Phys. Lett. B 18, 847 (2004). 8. H. Yamada, Phys. Lett. A 332, 65 2004; Int. J. Mod. Phys. B 18, 1697 2004; Phys. Rev. B 69, 014205 (2004). 9. F. A. B. F. de Moura and M. L. Lyra, Phys. Rev. Lett. 81, 3735 1998; Physica A 266, 465 (1999). 10. F. M. Izrailev and A. A. Krokhin, Phys. Rev. Lett. 82, 4062 (1999). 11. H. Shima, T. Nomura, and T. Nakayama, Phys. Rev. B 70, 075116 (2004). 12. E. Díaz, A. Rodríguez, F. Domínguez-Adame, and V. A. Malyshev, Europhys. Lett. 72, 1018 (2005). 13. R. A. Caetano and P. A. Schulz, Phys. Rev. Lett. 95, 126601 2005; 96, 059704 (2006). 14. A. Sedrakyan and F. Domínguez-Adame, Phys. Rev. Lett. 96, 059703 (2006). 15. G. Cuniberti, L. Craco, D. Porath, and C. Dekker, Phys. Rev. B 65, 241314 R (2002). 16. E. Maciá and S. Roche, Nanotechnology 17, 3002 (2006). 17. D. Klotsa, R. A. Römer, and M. S. Turner, Biophys. J. 89, 2187 (2005). 18. B. Kramer and A. Mckinnon, Rep. Prog. Phys. 56, 1469 (1993). 19. P. W. Anderson, D. J. Thouless, E. Abrahams, D. S. Fisher, Phys. Rev. B 22, 3519 (1980). 20. R. Schrader, H. Schulz-Baldes, and A. Sedrakyan, Ann. Henri Poincare 5, 1159 (2004). 21. D. G. Sedrakyan and A. G. Sedrakyan, Phys. Rev. B 60, 10114 (1999). 22. T. Hakobyan, D. Sedrakyan, A. Sedrakyan, I. Gómez, and F. Domínguez-Adame, Phys. Rev. B 61, 11432 (2000). 23. T. Sedrakyan and A. Ossipov, Phys. Rev. B 70, 214206 (2004). 24. Y. J. Yan and H. Zhang, J. Theor. Comput. Chem. 1, 225 (2002). 25. E. L. Albuquerque, M. L. Lyra, and F. A. B. F. de Moura, Physica A 370, 625 (2006).
Collections