Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Three representations of the fractional p-Laplacian:semigroup, extension and Balakrishnan formulas

Loading...
Thumbnail Image

Full text at PDC

Publication date

2021

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Spriger
Citations
Google Scholar

Citation

Abstract

We introduce three representation formulas for the fractional p-Laplace operator in the whole range of parameters 0 < s < 1 and 1 < p < ∞. Note that for p ≠ 2 this a nonlinear operator. The first representation is based on a splitting procedure that combines a renormalized nonlinearity with the linear heat semigroup. The second adapts the nonlinearity to the Caffarelli-Silvestre linear extension technique. The third one is the corresponding nonlinear version of the Balakrishnan formula. We also discuss the correct choice of the constant of the fractional p-Laplace operator in order to have continuous dependence as p → 2 and s → 0+, 1−. A number of consequences and proposals are derived. Thus, we propose a natural spectral-type operator in domains, different from the standard restriction of the fractional p-Laplace operator acting on the whole space. We also propose numerical schemes, a new definition of the fractional p-Laplacian on manifolds, as well as alternative characterizations of the Ws, p(ℝn) seminorms.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections