Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Three representations of the fractional p-Laplacian:semigroup, extension and Balakrishnan formulas

dc.contributor.authorDel Teso Méndez, Félix
dc.contributor.authorGómez-Castro, D.
dc.contributor.authorVázquez, Juan Luis
dc.date.accessioned2023-06-16T14:25:21Z
dc.date.available2023-06-16T14:25:21Z
dc.date.issued2021-08-23
dc.description.abstractWe introduce three representation formulas for the fractional p-Laplace operator in the whole range of parameters 0 < s < 1 and 1 < p < ∞. Note that for p ≠ 2 this a nonlinear operator. The first representation is based on a splitting procedure that combines a renormalized nonlinearity with the linear heat semigroup. The second adapts the nonlinearity to the Caffarelli-Silvestre linear extension technique. The third one is the corresponding nonlinear version of the Balakrishnan formula. We also discuss the correct choice of the constant of the fractional p-Laplace operator in order to have continuous dependence as p → 2 and s → 0+, 1−. A number of consequences and proposals are derived. Thus, we propose a natural spectral-type operator in domains, different from the standard restriction of the fractional p-Laplace operator acting on the whole space. We also propose numerical schemes, a new definition of the fractional p-Laplacian on manifolds, as well as alternative characterizations of the Ws, p(ℝn) seminorms.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipUnión Europea. Horizonte 2020
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/74795
dc.identifier.doi10.1515/fca-2021-0042
dc.identifier.issn1311-0454
dc.identifier.officialurlhttps://doi.org/10.1515/fca-2021-0042
dc.identifier.urihttps://hdl.handle.net/20.500.14352/4992
dc.journal.titleFractional Calculus and Applied Analysis
dc.language.isoeng
dc.publisherSpriger
dc.relation.projectIDNonlocal-CPD (88336)
dc.relation.projectIDPGC2018-094522-B-I0; PGC2018-098440-B-I0
dc.rights.accessRightsopen access
dc.subject.cdu517
dc.subject.cdu517.9
dc.subject.keywordFractional p-Laplacian
dc.subject.keywordBochner’s subordination
dc.subject.keywordSemigroup formula
dc.subject.keywordExtension problem
dc.subject.keywordBalakrishnan’s formula
dc.subject.keywordSpectral formulation
dc.subject.ucmAnálisis matemático
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleThree representations of the fractional p-Laplacian:semigroup, extension and Balakrishnan formulas
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication5400d9ae-bfa7-4205-850d-f9e34a361fa6
relation.isAuthorOfPublication.latestForDiscovery5400d9ae-bfa7-4205-850d-f9e34a361fa6

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gomezcastro_three.pdf
Size:
536.09 KB
Format:
Adobe Portable Document Format

Collections