Three representations of the fractional p-Laplacian:semigroup, extension and Balakrishnan formulas
dc.contributor.author | Del Teso Méndez, Félix | |
dc.contributor.author | Gómez-Castro, D. | |
dc.contributor.author | Vázquez, Juan Luis | |
dc.date.accessioned | 2023-06-16T14:25:21Z | |
dc.date.available | 2023-06-16T14:25:21Z | |
dc.date.issued | 2021-08-23 | |
dc.description.abstract | We introduce three representation formulas for the fractional p-Laplace operator in the whole range of parameters 0 < s < 1 and 1 < p < ∞. Note that for p ≠ 2 this a nonlinear operator. The first representation is based on a splitting procedure that combines a renormalized nonlinearity with the linear heat semigroup. The second adapts the nonlinearity to the Caffarelli-Silvestre linear extension technique. The third one is the corresponding nonlinear version of the Balakrishnan formula. We also discuss the correct choice of the constant of the fractional p-Laplace operator in order to have continuous dependence as p → 2 and s → 0+, 1−. A number of consequences and proposals are derived. Thus, we propose a natural spectral-type operator in domains, different from the standard restriction of the fractional p-Laplace operator acting on the whole space. We also propose numerical schemes, a new definition of the fractional p-Laplacian on manifolds, as well as alternative characterizations of the Ws, p(ℝn) seminorms. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | FALSE | |
dc.description.sponsorship | Unión Europea. Horizonte 2020 | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/74795 | |
dc.identifier.doi | 10.1515/fca-2021-0042 | |
dc.identifier.issn | 1311-0454 | |
dc.identifier.officialurl | https://doi.org/10.1515/fca-2021-0042 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/4992 | |
dc.journal.title | Fractional Calculus and Applied Analysis | |
dc.language.iso | eng | |
dc.publisher | Spriger | |
dc.relation.projectID | Nonlocal-CPD (88336) | |
dc.relation.projectID | PGC2018-094522-B-I0; PGC2018-098440-B-I0 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517 | |
dc.subject.cdu | 517.9 | |
dc.subject.keyword | Fractional p-Laplacian | |
dc.subject.keyword | Bochner’s subordination | |
dc.subject.keyword | Semigroup formula | |
dc.subject.keyword | Extension problem | |
dc.subject.keyword | Balakrishnan’s formula | |
dc.subject.keyword | Spectral formulation | |
dc.subject.ucm | Análisis matemático | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Three representations of the fractional p-Laplacian:semigroup, extension and Balakrishnan formulas | |
dc.type | journal article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5400d9ae-bfa7-4205-850d-f9e34a361fa6 | |
relation.isAuthorOfPublication.latestForDiscovery | 5400d9ae-bfa7-4205-850d-f9e34a361fa6 |
Download
Original bundle
1 - 1 of 1