Finite extinction time property for a delayed linear problem on a manifold without boundary
Loading...
Full text at PDC
Publication date
2011
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Mathematical Sciences
Citation
Abstract
We prove that the mere presence of a delayed term is able to connect the initial state u0 on a manifold without boundary (here assumed given as the set ∂Ω where Ω is an open bounded set in RN ) with the zero state on it and in a finite time even if the dynamics is given by a linear problem. More precisely, we extend the states to the interior of Ω as harmonic functions and assume the dynamics given by a dynamic boundary condition of the type ∂u ∂t (t, x) + ∂u ∂n (t, x) + b(t)u(t − τ, x) = 0 on ∂Ω, where b : [0, ∞) → R is continuous and τ > 0. Using a suitable eigenfunction expansion, involving the Steklov BVP {∆ϕn = 0 in Ω, ∂νϕn = λnϕn on ∂Ω}, we show that if b(t)vanishes on [0, τ] ∪ [2τ, ∞) and satisfies some integral balance conditions, then the state u(t, .) corresponding to an initial datum u0(t, ·) = µ(t)ϕn(·) vanish on ∂Ω (and therefore in Ω) for t ≥ 2τ. We also analyze more general types of delayed boundary actions for which the finite extinction phenomenon holds for a much larger class of initial conditions and the associated implicit discretized
problem.