Finite extinction time property for a delayed linear problem on a manifold without boundary
dc.contributor.author | Casal, Alfonso C. | |
dc.contributor.author | Díaz Díaz, Jesús Ildefonso | |
dc.contributor.author | Vegas Montaner, José María | |
dc.date.accessioned | 2023-06-20T03:49:52Z | |
dc.date.available | 2023-06-20T03:49:52Z | |
dc.date.issued | 2011 | |
dc.description.abstract | We prove that the mere presence of a delayed term is able to connect the initial state u0 on a manifold without boundary (here assumed given as the set ∂Ω where Ω is an open bounded set in RN ) with the zero state on it and in a finite time even if the dynamics is given by a linear problem. More precisely, we extend the states to the interior of Ω as harmonic functions and assume the dynamics given by a dynamic boundary condition of the type ∂u ∂t (t, x) + ∂u ∂n (t, x) + b(t)u(t − τ, x) = 0 on ∂Ω, where b : [0, ∞) → R is continuous and τ > 0. Using a suitable eigenfunction expansion, involving the Steklov BVP {∆ϕn = 0 in Ω, ∂νϕn = λnϕn on ∂Ω}, we show that if b(t)vanishes on [0, τ] ∪ [2τ, ∞) and satisfies some integral balance conditions, then the state u(t, .) corresponding to an initial datum u0(t, ·) = µ(t)ϕn(·) vanish on ∂Ω (and therefore in Ω) for t ≥ 2τ. We also analyze more general types of delayed boundary actions for which the finite extinction phenomenon holds for a much larger class of initial conditions and the associated implicit discretized problem. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Unión Europea. FP7 | |
dc.description.sponsorship | DGISPI (Spain) | |
dc.description.sponsorship | UCM | |
dc.description.sponsorship | UPM | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/29696 | |
dc.identifier.issn | 1078-0947 | |
dc.identifier.officialurl | https://aimsciences.org/journals/pdfs.jsp?paperID=6969&mode=full | |
dc.identifier.relatedurl | https://aimsciences.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/44519 | |
dc.journal.title | Discrete and Continuous Dynamical Systems | |
dc.language.iso | eng | |
dc.page.final | 271 | |
dc.page.initial | 265 | |
dc.publisher | American Institute of Mathematical Sciences | |
dc.relation.projectID | FIRST (238702) | |
dc.relation.projectID | MTM200806208 | |
dc.relation.projectID | Research group MOMAT (Ref. 910480) | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.9 | |
dc.subject.keyword | Finite extinction time | |
dc.subject.keyword | delayed feedback control | |
dc.subject.keyword | dynamic boundary conditions | |
dc.subject.keyword | linear parabolic equations. | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Finite extinction time property for a delayed linear problem on a manifold without boundary | |
dc.type | journal article | |
dc.volume.number | Suppl. | |
dcterms.references | S. Antontsev, J. I. DÍaz, S. Shmarev, “Energy Methods for Free Boundary Problems. Applications to Nonlinear PDEs and Fluid Mechanics”, Birkhäuser, Boston, 2002. I. Bejenaru, I., Díaz, J.I., Vrabie, I., An abstract approximate controllability result and applications to elliptic and parabolic systems with dynamic boundary conditions, Electron. J. Differential Equations, 50 (2001), 1–19. A.C. Casal, J.I. Díaz, J.M. Vegas, Finite extinction time via delayed feedback actions, Dyn. Contin. Discrete Impuls. Syst. Series A, Math. Anal., S2, 14 (2007), 23–27. A.C. Casal, J.I. Diaz, J.M. Vegas, Finite extinction and null controllability via delayed feedback non-local actions, Nonlinear Analysis, 71 (2009), e2018–e2022. A.C. Casal, J.I. Díaz, J.M. Vegas, Blow-up in some ordinary and partial differential equations with time-delay, Dynamic Systems and Applications, 18 (2009), 29–46. A.C. Casal, J.I. Díaz, J.M. Vegas, Blow-up in functional partial differential equations with large amplitude memory terms, “CEDYA 2009 Proceedings", Univ. Castilla-La Mancha, Spain, (2009), 1–8, ISBN: 978-84-692-6473-7. Escher, J. Nonlinear elliptic systems with dynamic boundary conditions, Math. Z., 210 (3)(1992), 413–439. A. Friedman and M. A. Herrero, Extinction properties of semilinear heat equations with strong absorption, J. Math. Anal. and Appl., 124 (1987), 530–546. J.K. Hale, “Theory of Functional Differential Equations”, Springer, New York, 1977. R. Redheffer and R. Redlinger, Quenching in time-delay systems: a summary and a counterexample, SIAM J. Math. Anal., 13 (1984), 1114–1124. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 34ef57af-1f9d-4cf3-85a8-6a4171b23557 | |
relation.isAuthorOfPublication.latestForDiscovery | 34ef57af-1f9d-4cf3-85a8-6a4171b23557 |