Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Finite extinction time property for a delayed linear problem on a manifold without boundary

dc.contributor.authorCasal, Alfonso C.
dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorVegas Montaner, José María
dc.date.accessioned2023-06-20T03:49:52Z
dc.date.available2023-06-20T03:49:52Z
dc.date.issued2011
dc.description.abstractWe prove that the mere presence of a delayed term is able to connect the initial state u0 on a manifold without boundary (here assumed given as the set ∂Ω where Ω is an open bounded set in RN ) with the zero state on it and in a finite time even if the dynamics is given by a linear problem. More precisely, we extend the states to the interior of Ω as harmonic functions and assume the dynamics given by a dynamic boundary condition of the type ∂u ∂t (t, x) + ∂u ∂n (t, x) + b(t)u(t − τ, x) = 0 on ∂Ω, where b : [0, ∞) → R is continuous and τ > 0. Using a suitable eigenfunction expansion, involving the Steklov BVP {∆ϕn = 0 in Ω, ∂νϕn = λnϕn on ∂Ω}, we show that if b(t)vanishes on [0, τ] ∪ [2τ, ∞) and satisfies some integral balance conditions, then the state u(t, .) corresponding to an initial datum u0(t, ·) = µ(t)ϕn(·) vanish on ∂Ω (and therefore in Ω) for t ≥ 2τ. We also analyze more general types of delayed boundary actions for which the finite extinction phenomenon holds for a much larger class of initial conditions and the associated implicit discretized problem.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipDGISPI (Spain)
dc.description.sponsorshipUCM
dc.description.sponsorshipUPM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29696
dc.identifier.issn1078-0947
dc.identifier.officialurlhttps://aimsciences.org/journals/pdfs.jsp?paperID=6969&mode=full
dc.identifier.relatedurlhttps://aimsciences.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44519
dc.journal.titleDiscrete and Continuous Dynamical Systems
dc.language.isoeng
dc.page.final271
dc.page.initial265
dc.publisherAmerican Institute of Mathematical Sciences
dc.relation.projectIDFIRST (238702)
dc.relation.projectIDMTM200806208
dc.relation.projectIDResearch group MOMAT (Ref. 910480)
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.keywordFinite extinction time
dc.subject.keyworddelayed feedback control
dc.subject.keyworddynamic boundary conditions
dc.subject.keywordlinear parabolic equations.
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleFinite extinction time property for a delayed linear problem on a manifold without boundary
dc.typejournal article
dc.volume.numberSuppl.
dcterms.referencesS. Antontsev, J. I. DÍaz, S. Shmarev, “Energy Methods for Free Boundary Problems. Applications to Nonlinear PDEs and Fluid Mechanics”, Birkhäuser, Boston, 2002. I. Bejenaru, I., Díaz, J.I., Vrabie, I., An abstract approximate controllability result and applications to elliptic and parabolic systems with dynamic boundary conditions, Electron. J. Differential Equations, 50 (2001), 1–19. A.C. Casal, J.I. Díaz, J.M. Vegas, Finite extinction time via delayed feedback actions, Dyn. Contin. Discrete Impuls. Syst. Series A, Math. Anal., S2, 14 (2007), 23–27. A.C. Casal, J.I. Diaz, J.M. Vegas, Finite extinction and null controllability via delayed feedback non-local actions, Nonlinear Analysis, 71 (2009), e2018–e2022. A.C. Casal, J.I. Díaz, J.M. Vegas, Blow-up in some ordinary and partial differential equations with time-delay, Dynamic Systems and Applications, 18 (2009), 29–46. A.C. Casal, J.I. Díaz, J.M. Vegas, Blow-up in functional partial differential equations with large amplitude memory terms, “CEDYA 2009 Proceedings", Univ. Castilla-La Mancha, Spain, (2009), 1–8, ISBN: 978-84-692-6473-7. Escher, J. Nonlinear elliptic systems with dynamic boundary conditions, Math. Z., 210 (3)(1992), 413–439. A. Friedman and M. A. Herrero, Extinction properties of semilinear heat equations with strong absorption, J. Math. Anal. and Appl., 124 (1987), 530–546. J.K. Hale, “Theory of Functional Differential Equations”, Springer, New York, 1977. R. Redheffer and R. Redlinger, Quenching in time-delay systems: a summary and a counterexample, SIAM J. Math. Anal., 13 (1984), 1114–1124.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
155.pdf
Size:
316.11 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Art_Dresden_8_1.pdf
Size:
124.16 KB
Format:
Adobe Portable Document Format

Collections