Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Activity-Dependent Gating of Parvalbumin Interneuron Function by the Perineuronal Net Protein Brevican

Citation

Emilia Favuzzi, André Marques-Smith, Rubén Deogracias, Christian M Winterflood, Alberto Sánchez-Aguilera, Laura Mantoan, Patricia Maeso, Cathy Fernandes, Helge Ewers, Beatriz Rico. Activity-Dependent Gating of Parvalbumin Interneuron Function by the Perineuronal Net Protein Brevican. Neuron . 2017 Aug 2;95(3):639-655.e10. (Epub 2017 Jul 14)

Abstract

Activity-dependent neuronal plasticity is a fundamental mechanism through which the nervous system adapts to sensory experience. Several lines of evidence suggest that parvalbumin (PV+) interneurons are essential in this process, but the molecular mechanisms underlying the influence of experience on interneuron plasticity remain poorly understood. Perineuronal nets (PNNs) enwrapping PV+ cells are long-standing candidates for playing such a role, yet their precise contribution has remained elusive. We show that the PNN protein Brevican is a critical regulator of interneuron plasticity. We find that Brevican simultaneously controls cellular and synaptic forms of plasticity in PV+ cells by regulating the localization of potassium channels and AMPA receptors, respectively. By modulating Brevican levels, experience introduces precise molecular and cellular modifications in PV+ cells that are required for learning and memory. These findings uncover a molecular program through which a PNN protein facilitates appropriate behavioral responses to experience by dynamically gating PV+ interneuron function

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections