Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Dealing with endogeneity in data envelopment analysis applications

Loading...
Thumbnail Image

Full text at PDC

Publication date

2017

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

Although the presence of the endogeneity is frequently observed in economic production processes, it tends to be overlooked when practitioners apply data envelopment analysis (DEA). In this paper we deal with this issue in two ways. First, we provide a simple statistical heuristic procedure that enables practitioners to identify the presence of endogeneity in an empirical application. Second, we propose the use of an instrumental input DEA (II-DEA) as a potential tool to address this problem and thus improve DEA estimations. A Monte Carlo experiment confirms that the proposed II-DEA approach outperforms standard DEA in finite samples under the presence of high positive endogeneity. To illustrate our theoretical findings, we perform an empirical application on the education sector.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections