Delineation of the olive pollen proteome and its allergenome unmasks cyclophilin as a relevant cross-reactive allergen

Citation

San Segundo-Acosta P, Oeo-Santos C, Benedé S, de Los Ríos V, Navas A, Ruiz-Leon B, Moreno C, Pastor-Vargas C, Jurado A, Villalba M, Barderas R. Delineation of the Olive Pollen Proteome and Its Allergenome Unmasks Cyclophilin as a Relevant Cross-Reactive Allergen. J Proteome Res. 2019 Aug 2;18(8):3052-3066. doi: 10.1021/acs.jproteome.9b00167. Epub 2019 Jun 27. PMID: 31192604.

Abstract

Olive pollen is a major allergenic source worldwide due to its extensive cultivation. We have combined available genomics data with a comprehensive proteomics approach to get the annotated olive tree (Olea europaea L.) pollen proteome and define its complex allergenome. A total of 1907 proteins were identified by LC–MS/MS using predicted protein sequences from its genome. Most proteins (60%) were predicted to possess catalytic activity and be involved in metabolic processes. In total, 203 proteins belonging to 47 allergen families were found in olive pollen. A peptidyl–prolyl cis–trans isomerase, cyclophilin, produced in Escherichia coli, was found as a new olive pollen allergen (Ole e 15). Most Ole e 15-sensitized patients were children (63%) and showed strong IgE recognition to the allergen. Ole e 15 shared high sequence identity with other plant, animal, and fungal cyclophilins and presented high IgE cross-reactivity with pollen, plant food, and animal extracts.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections