Energy and large time estimates for nonlinear porous medium ow with nonlocal pressure in RN

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
We study the general family of nonlinear evolution equations of fractional diffusive type [delta]u-div(|u|m1[nabla]([delta]-s||u||m2-1u|= f. Such type of nonlocal equationsare related to the porous medium equations with a fractional Laplacian pressure.Our study concerns the case in which the ow takes place in the whole space. We consider m1;m2 > 0, and s 2 (0; 1), and prove existence of weak solutions. Moreover, when f _ 0 we obtain the Lp-L1 decay estimates of solutions, for p _ 1. Besides, we also investigate the _nite time extinction of solution. Our results improve the recent papers in the literature.
ANTONTSEV, S., DÍAZ, J.I., SHMAREV, S.: Energy Methods for Free Boundary Problems. Applications to nonlinear PDEs and Fluid Mechanics. Series Progress in Nonlinear Differential Equations and Their Applications, No. 48. Birkhäuser, Boston 2002 BÉNILAN, Ph, CRANDALL, M.G.: The continuous dependence on φ of solutions of ut−Δφ(u)=0. Indiana Univ. Math. J. 30, 161–177, 1981 BILER, P., IMBERT, C., KARCH, G.: The nonlocal porous medium equation: Barenblatt profiles and other weak solutions. Arch. Ration. Mech. Anal. 215, 497–529, 2015 BONFORTE, M., FIGALLI, A., ROS-OTÓN, X.: Infinite speed of propagation and regularity of solutions to the fractional porous medium equation in general domains. Commun. Pure Appl. Math. 70(8), 1472–1508, 2017 BONFORTE, M., FIGALLI, A., VÁZQUEZ, J.L.: Sharp global estimates for local and nonlocal porous medium-type equations in bounded domains. Anal. PDE11, 945–982, 2018 BONFORTE, M., SIRE, Y., VÁZQUEZ, J.L.: Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete Contin. Dyn. Syst. 35(12), 5725–5767, 2015 BONFORTE, M., VÁZQUEZ, J.L.: Quantitative local and global a priori estimates for fractional nonlinear diffusion equations. Adv. Math. 250, 242–284, 2014 BONFORTE, M., VÁZQUEZ, J.L.: A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains. Arch. Ration. Mech. Anal. 218, 317–362, 2015 CAFFARELLI, L., SILVESTRE, L.: An extension problem related to the fractional Laplacian. Commun. PDEs32, 1245–1260, 2007 CAFFARELLI, L.A., SORIA, F., VÁZQUEZ, J.L.: Regularity of solutions of the fractional porous medium flow. J. Eur. Math. Soc. 15, 1701–1746, 2013 CAFFARELLI, L.A., VÁZQUEZ, J.L.: Nonlinear porous medium flow with fractional potential pressure. Arch. Ration. Mech. Anal. 202, 537–565, 2011 CAFFARELLI, L.A., VÁZQUEZ, J.L.: Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete Contin. Dyn. Syst. A. 29, 1393–1404, 2011 CAFFARELLI, L., STINGA, P.R.: Fractional elliptic equations: Caccioppoli estimates and regularity. Ann. Inst. Henri Poincaré (C) Anal. Non Linéaire33, 767–807, 2016 CONSTANTIN, P., IGNATOVA, M.: Remarks on the fractional Laplacian with Dirichlet boundary conditions and applications. Int. Math. Res. Not. 6, 1–21, 2016 DAO, N.A., DÍAZ, J.I., KHA, H.V.: Complete quenching phenomenon and instantaneous shrinking of support of solutions of degenerate parabolic equations with nonlinear singular absorption. Proc. R. Soc. Edinb. 149, 1323–1346, 2019 DAVIES, E.B.: Explicit constants for Gaussian upper bounds on heat kernels. Am. J. Math. 109, 319–333, 1987 De PABLO, A., QUIRÓS, F., RODRÍGUEZ, A., VÁZQUEZ, J.L.: A fractional porous medium equation. Adv. Math. 226, 1378–1409, 2011 De PABLO, A., QUIRÓS, F., RODRÍGUEZ, A., VÁZQUEZ, J.L.: A general fractional porous medium equation. Commun. Pure Appl. Math. 65, 1242–1284, 2012 DÍAZ, J.I., GÓMEZ-CASTRO, D., VÁZQUEZ, J.L.: The fractional Schrödinger equation with general nonnegative potentials. The weighted space approach. Nonlinear Anal. 177, 325–360, 2018 DOLBEAULT, J., ZHANG, A.: Flows and functional inequalities for fractional operators. Appl. Anal. 96(9), 1547–1560, 2017 NGUYEN, Q.-H., VÁZQUEZ, J.L.: Porous medium equation with nonlocal pressure in a bounded domain. Commun. PDEs43, 1502–1539, 2018 PORRETTA, A.: Existence results for nonlinear parabolic equations via strong convergence of truncations. Annali di Matematica pura ed applicata. (IV)CLXXVII, 143–172, 1999 RAKOTOSON, J.M., TEMAM, R.: An optimal compactness theorem and application to elliptic–parabolic systems. Appl. Math. Lett. 14, 303–306, 2001 SERFATY, S., VÁZQUEZ, J.L.: A mean field equation as limit of nonlinear diffusion with fractional Laplacian operators. Calc. Var. PDEs49, 1091–1120, 2014 SIMON, J.: Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. 146, 65–96, 1987 STAN, D., del TESO, F., VÁZQUEZ, J.L.: Finite and infinite speed of propagation for porous medium equations with fractional pressure. J. Differ. Equ. 260, 1154–1199, 2016 STAN, D., del TESO, F., VÁZQUEZ, J.L.: Existence of weak solutions for porous medium equations with nonlocal pressure. Arch. Ration. Mech. Anal. 233(1), 451–496, 2019 STEIN, E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton 1970 STINGA, P.R., TORREA, J.L.: Extension problem and Harnack inequality for some fractional operators. Commun. PDE35, 2092–2122, 2010 Taylor, M.E.: Partial Differential Equations. III: Nonlinear Equations, 2nd edn, xxii, p. 715. Applied Mathematical Sciences 117. Springer, New York (2011) VÁZQUEZ, J.L.: The Porous Medium Equation. Mathematical Theory Oxford Mathematical Monographs. Oxford University Press, Oxford 2007 VÁZQUEZ, J.L., de PABLO, A., QUIRÓS, F., RODRÍGUEZ, A.: Classical solutions and higher regularity for nonlinear fractional diffusion equations. J. Eur. Math. Soc. 19, 1949–1975, 2017 ZHANG, Q.S.: The boundary behavior of heat kernels of Dirichlet Laplacians. J. Differ. Equ. 182, 416–430, 2002