Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Integral mappings between Banach spaces

Loading...
Thumbnail Image

Full text at PDC

Publication date

2003

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Villanueva Díez, I. «Integral Mappings between Banach Spaces». Journal of Mathematical Analysis and Applications, vol. 279, n.o 1, marzo de 2003, pp. 56-70. DOI.org (Crossref), https://doi.org/10.1016/S0022-247X(02)00362-1.

Abstract

We consider the classes of “Grothendieck-integral” (G-integral)and “Pietsch-integral” (P-integral) linear and multilinear operators (see definitions below), and we prove that a multilinear operator between Banach spaces is G-integral (resp. P-integral) if and only if its linearization is G-integral (resp. P-integral) on the injective tensor product of the spaces, together with some related results concerning certain canonically associated linear operators. As an application we give a new proof of a result on the Radon-Nikodym property of the dual of the injective tensor product of Banach spaces. Moreover, we give a simple proof of a characterization of the G-integral operators on C(K,X) spaces and we also give a partial characterization of P-integral operators on C(K,X) spaces.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections