Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the convergence of the Generalized Finite Difference Method for solving a chemotaxis system with no chemical diffusion

Loading...
Thumbnail Image

Full text at PDC

Publication date

2021

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Citations
Google Scholar

Citation

Abstract

This paper focuses on the numerical analysis of a discrete version of a nonlinear reaction–diffusion system consisting of an ordinary equation coupled to a quasilinear parabolic PDE with a chemotactic term. The parabolic equation of the system describes the behavior of a biological species, while the ordinary equation defines the concentration of a chemical substance. The system also includes a logistic-like source, which limits the growth of the biological species and presents a time-periodic asymptotic behavior. We study the convergence of the explicit discrete scheme obtained by means of the generalized finite difference method and prove that the nonnegative numerical solutions in two-dimensional space preserve the asymptotic behavior of the continuous ones. Using different functions and long-time simulations, we illustrate the efficiency of the developed numerical algorithms in the sense of the convergence in space and in time.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections