On the convergence of the Generalized Finite Difference Method for solving a chemotaxis system
with no chemical diffusion
dc.contributor.author | Benito, J. J. | |
dc.contributor.author | García, A. | |
dc.contributor.author | Gavete, L. | |
dc.contributor.author | Negreanu Pruna, Mihaela | |
dc.contributor.author | Ureña, F. | |
dc.contributor.author | Vargas, A. M. | |
dc.date.accessioned | 2023-06-17T08:29:37Z | |
dc.date.available | 2023-06-17T08:29:37Z | |
dc.date.issued | 2021 | |
dc.description.abstract | This paper focuses on the numerical analysis of a discrete version of a nonlinear reaction–diffusion system consisting of an ordinary equation coupled to a quasilinear parabolic PDE with a chemotactic term. The parabolic equation of the system describes the behavior of a biological species, while the ordinary equation defines the concentration of a chemical substance. The system also includes a logistic-like source, which limits the growth of the biological species and presents a time-periodic asymptotic behavior. We study the convergence of the explicit discrete scheme obtained by means of the generalized finite difference method and prove that the nonnegative numerical solutions in two-dimensional space preserve the asymptotic behavior of the continuous ones. Using different functions and long-time simulations, we illustrate the efficiency of the developed numerical algorithms in the sense of the convergence in space and in time. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | FALSE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/74749 | |
dc.identifier.doi | 10.1007/s40571-020-00359-w | |
dc.identifier.issn | 2196-4378 | |
dc.identifier.officialurl | https://doi.org/10.1007/s40571-020-00359-w | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/7281 | |
dc.journal.title | Computational Particle Mechanics | |
dc.language.iso | eng | |
dc.page.final | 636 | |
dc.page.initial | 625 | |
dc.publisher | Springer | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 519.6 | |
dc.subject.keyword | Chemotaxis systems | |
dc.subject.keyword | Generalized Finite difference | |
dc.subject.keyword | Meshless method | |
dc.subject.keyword | Asymptotic stability | |
dc.subject.ucm | Análisis numérico | |
dc.subject.unesco | 1206 Análisis Numérico | |
dc.title | On the convergence of the Generalized Finite Difference Method for solving a chemotaxis system with no chemical diffusion | |
dc.type | journal article | |
dc.volume.number | 8 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 34eacc25-4f35-4e28-9665-9a3764841087 | |
relation.isAuthorOfPublication.latestForDiscovery | 34eacc25-4f35-4e28-9665-9a3764841087 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- negreanu_ontheconvergence.pdf
- Size:
- 457.08 KB
- Format:
- Adobe Portable Document Format