Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Diversity of Lorentz-Zygmund spaces of operators defined by approximation numbers

Loading...
Thumbnail Image

Full text at PDC

Publication date

2023

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Cobos, F., & Kühn, T. (2023). Diversity of Lorentz-Zygmund Spaces of Operators Defined by Approximation Numbers. Analysis Mathematica, 49(4), 951-969. https://doi.org/10.1007/s10476-023-0239-x

Abstract

We prove the following dichotomy for the spaces ℒ (a) p,q,α (X, Y) of all operators T ∈ ℒ(X, Y) whose approximation numbers belong to the Lorentz-Zygmund sequence spaces ℓp,q(log ℓ)α: If X and Y are infinite-dimensional Banach spaces, then the spaces ℒ (a) p,q,α (X, Y) with 0 < p < ∞, 0 < q ≤ ∞ and α ∈ ℝ are all different from each other, but otherwise, if X or Y are finite-dimensional, they are all equal (to ℒ(X, Y)). Moreover we show that the scale is strictly increasing in q, where ℒ (a) ∈,q (X, Y) is the space of all operators in ℒ(X, Y) whose approximation numbers are in the limiting Lorentz sequence space ∓∈,q.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections