Diversity of Lorentz-Zygmund spaces of operators defined by approximation numbers
dc.contributor.author | Cobos Díaz, Fernando | |
dc.contributor.author | Kühn, Thomas | |
dc.date.accessioned | 2023-10-31T08:46:31Z | |
dc.date.available | 2023-10-31T08:46:31Z | |
dc.date.issued | 2023-10-09 | |
dc.description.abstract | We prove the following dichotomy for the spaces ℒ (a) p,q,α (X, Y) of all operators T ∈ ℒ(X, Y) whose approximation numbers belong to the Lorentz-Zygmund sequence spaces ℓp,q(log ℓ)α: If X and Y are infinite-dimensional Banach spaces, then the spaces ℒ (a) p,q,α (X, Y) with 0 < p < ∞, 0 < q ≤ ∞ and α ∈ ℝ are all different from each other, but otherwise, if X or Y are finite-dimensional, they are all equal (to ℒ(X, Y)). Moreover we show that the scale is strictly increasing in q, where ℒ (a) ∈,q (X, Y) is the space of all operators in ℒ(X, Y) whose approximation numbers are in the limiting Lorentz sequence space ∓∈,q. | en |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.identifier.citation | Cobos, F., & Kühn, T. (2023). Diversity of Lorentz-Zygmund Spaces of Operators Defined by Approximation Numbers. Analysis Mathematica, 49(4), 951-969. https://doi.org/10.1007/s10476-023-0239-x | |
dc.identifier.doi | 10.1007/s10476-023-0239-x | |
dc.identifier.officialurl | https//doi.org/10.1007/s10476-023-0239-x | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/88500 | |
dc.journal.title | Analysis Mathematica | |
dc.language.iso | eng | |
dc.rights.accessRights | embargoed access | |
dc.subject.keyword | Space of operators defined by approximation numbers | |
dc.subject.keyword | Logarithmic interpolation space | |
dc.subject.keyword | Lorentz–Zygmund space | |
dc.subject.keyword | Dependence on the parameters | |
dc.subject.ucm | Análisis matemático | |
dc.subject.ucm | Álgebra | |
dc.subject.unesco | 1299 Otras Especialidades Matemáticas | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | Diversity of Lorentz-Zygmund spaces of operators defined by approximation numbers | en |
dc.type | journal article | |
dc.type.hasVersion | AM | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | ad35279f-f928-4b72-a5bd-e422662ac4c1 | |
relation.isAuthorOfPublication.latestForDiscovery | ad35279f-f928-4b72-a5bd-e422662ac4c1 |
Download
Original bundle
1 - 1 of 1