Publication: On a problem of Lions concerning real interpolation spaces. The quasi-Banach case
dc.contributor.author | Cobos, Fernando | |
dc.contributor.author | Cwikel, M. | |
dc.contributor.author | Kühn, Thomas | |
dc.date.accessioned | 2023-06-22T10:56:51Z | |
dc.date.available | 2023-06-22T10:56:51Z | |
dc.date.issued | 2022-08-28 | |
dc.description | CRUE-CSIC (Acuerdos Transformativos 2022) | |
dc.description.abstract | We prove that, under a mild condition on a couple (A0;A1) of quasi-Banach spaces, all real interpolation spaces (A0;A1)θ,p with 0 < θ < 1 and 0 < p ≤ ∞ are different from each other. In the Banach case and for 1 ≤ p ≤ ∞ this was shown by Janson, Nilsson, Peetre and Zafran, thus solving an old problem posed by J.-L. Lions. Moreover, we give an application to certain spaces which are important objects in Operator Theory and which consist of bounded linear operators whose approximation numbers belong to Lorentz sequence spaces. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/74277 | |
dc.identifier.citation | [1] J.M. Almira and P. Fernández-Martínez, On slow decay of Peetre's K-functional. J. Math. Anal. Appl. 494 (2021) 124653. [2] C. Bennett and R. Sharpley, Interpolation of operators. Pure and Applied Mathematics, 129. Academic Press, Boston, MA, 1988. [3] J. Bergh and J. Löfström, Interpolation spaces. An introduction. Grundlehren der mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York, 1976. [4] Yu. A. Brudnyi and N. Ya. Krugljak, Interpolation functors and interpolation spaces. North-Holland Mathematical Library, 47. North-Holland, Amsterdam, 1991. [5] A. Dvoretzky, Some results on convex bodies and Banach spaces. Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), 123-160, Jerusalem Academic Press, Jerusalem, and Pergamon, Oxford, 1961. [6] T. Figiel, A short proof of Dvoretzky's theorem on almost spherical sections of convex bodies. Compositio Math. 33 (1976), 297-301. [7] E. Gagliardo, A uni�ed structure in various families of function spaces. Compactness and closure theorems. Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), 237-241, Jerusalem Academic Press, Jerusalem, and Pergamon, Oxford, 1961. [8] S. Janson, P. Nilsson, J. Peetre and M. Zafran, Notes on Wolff's notes on interpolation spaces. Proc. London Math. Soc. (3), 48 (1984), 283-299. [9] H. König, Interpolation of operator ideals with an application to eigenvalue distribution problems. Math. Ann. 233 (1978), 35-48. [10] H. König, Eigenvalue distribution of compact operators. Operator Theory: Advances and Applications, Vol. 16, Birkhäuser, Basel, 1986. [11] G. Köthe, Topological vector spaces I. Grundlehren der mathematischen Wissenschaften, Band 159, Springer-Verlag New York, 1969. [12] P. Krée, Interpolation d'espaces qui ne sont ni norms ni complets. Applications. Ann. Inst. Fourier 17 (1967), 137-174. [13] M. Lévy, L'espace d'interpolation réel (A0;A1)θ,p contient lp. C. R. Acad. Sci. Paris 289 (1979), 675-677. [14] M. Lévy, Structure �fine des espaces d'interpolation réels; application aux espaces de Lorentz, PhD thesis, Univ. Pierre et Marie Curie Paris, 1980. [15] J.A. López Molina, On subspaces isomorphic to lp in interpolation of quasi Banach spaces. Turkish J. Math. 24 (2000), 373-378. [16] J.A. López Molina, Existence of complemented subspaces isomorphic to lp in quasi Banach interpolation spaces. Rocky Mountain J. Math. 39 (2009), 899-926. [17] V. D. Milman, New proof of the theorem of A. Dvoretzky on intersections of convex bodies. (in Russian) Funktsional. Anal. i Prilozhen. 5 (1971), No. 4, 28-37. [18] J. Peetre and G. Sparr, Interpolation of normed Abelian groups. Ann. Mat. Pura Appl. 92 (1972), 217-262. [19] A. Pietsch, Operator ideals. VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, and North-Holland Mathematical Library, 20. North-Holland Publishing Co., Amsterdam-New York, 1980. [20] A. Pietsch, Eigenvalues and s-numbers. Cambridge Studies in Advanced Mathematics, 13. Cambridge University Press, Cambridge, 1987. [21] G. Pisier, The volume of convex bodies and Banach space geometry. Cambridge Tracts in Mathematics, 94. Cambridge University Press, Cambridge, 1989. [22] W. Rudin, Functional analysis. McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. [23] J. D. Stafney, Analytic interpolation of certain multiplier spaces. Pacifi�c J. Math. 32 (1970), 241-248. [24] A. Szankowski, On Dvoretzky's theorem on almost sperical sections of convex bodies. Israel J. Math. 17 (1974), 325-338. [25] H. Triebel, Über die Verteilung der Approximationszahlen kompakter Operatoren in Sobolev-Besov-Räumen. Invent. Math. 4 (1967), 275-293. [26] H. Triebel, Interpolation theory, function spaces, differential operators. VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, and North-Holland Mathematical Library, 18. North-Holland Publishing Co., Amsterdam-New York, 1978 | |
dc.identifier.doi | 10.1016/j.jmaa.2022.126634 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.officialurl | https://doi.org/10.1016/j.jmaa.2022.126634 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/71924 | |
dc.journal.title | Journal of Mathematical Analysis and Applications | |
dc.language.iso | eng | |
dc.page.initial | 126634 | |
dc.publisher | Elsevier | |
dc.relation.projectID | PID2021-123557NB-I00 | |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/3.0/es/ | |
dc.subject.cdu | 517.98 | |
dc.subject.keyword | Real interpolation | |
dc.subject.keyword | K-functional | |
dc.subject.keyword | Dependence on the parameters | |
dc.subject.keyword | Spaces of operators defined by approximation numbers. | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | On a problem of Lions concerning real interpolation spaces. The quasi-Banach case | |
dc.type | journal article | |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1-s2.0-S0022247X22006485-main.pdf
- Size:
- 403.31 KB
- Format:
- Adobe Portable Document Format