Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Irregularity Index and Spherical Densities of the Penta-Sierpinski Gasket

Loading...
Thumbnail Image

Full text at PDC

Publication date

2023

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Nature
Citations
Google Scholar

Citation

Mera, M.E., Morán, M. Irregularity Index and Spherical Densities of the Penta-Sierpinski Gasket. Mediterr. J. Math. 20, 322 (2023). https://doi.org/10.1007/s00009-023-02528-6

Abstract

We compute the centred Hausdorff measure, Cs(P) ∼ 2.44, and the packing measure, Ps(P) ∼ 6.77, of the penta-Sierpinski gasket, P, with explicit error bounds. We also compute the full spectra of asymptotic spherical densities of these measures in P, which, in contrast with that of the Sierpinski gasket, consists of a unique interval. These results allow us to compute the irregularity index of P, I(P) ∼ 0.6398, which we define for any self-similar set E with open set condition as I(E) = 1 − (Cs(E)/Ps(E)) .

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections