Calculating ultimate non-ruin probabilities when claim sizes follow a generalized r-convolution distribution function

Thumbnail Image
Official URL
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Facultad de Ciencias Económicas y Empresariales. Decanato
Google Scholar
Research Projects
Organizational Units
Journal Issue
The non-ruin probability, for initial reserves u, in the classical can be calculated using the so-called Bromwich-Mellin inversion formula, an outstanding result from Residues Theory first introduced for these purposes by Seal(1977) for exponential claim size. We will use this technique when claim sizes follow a generalized r-convolution function distribution. Some of the most frequently used heavy-tailed distributions in actuarial science belongs to this family. Thorin(1977) or Berg(1981) proved that Pareto distributions are members of this family; so Thorin(1977) did with Log-normal distributions.
Unesco subjects
Boas, R. (1987) Invitation to complex analysis. The Random House/Birkhauser mathematics series. New York. Bohman, H. (1971) Ruin probabilities. Skandinavisk Aktuarietidskrift. 159-163. Bohman, H. (1974) Fouricr Invcrsion-Distribution functions-Long tails. Scand. Actuarial Journal 43-45. Bohman, H. (1975) Numerical inversion of characteristic functions. Sean. Act. JournaL 121-124. Berg, C. (1981). The Pareto distribution is a generalized r-convolution-a new proof. Sean. Act. Journal. 117-119. Conway, J. (1978) Punctions of one complex variable I. Second edition. Springer-Verlag. New York. Cramer, H. (1955) Collective Risk Theory. Jubille Volume of F. Skandia. Goovaerts, M., D'Hooge, L., De Pril, N. (1977). On a class of generalized r-convolutions. Sean. Act. Journal. 21-30. Piessens, R. (1969) New quadrature formulas for the numerical inversion of Laplace tmnsforms. BIT 9, 351-361. Seal, H. (1971) Numerical calculation of the Bohman-Esscher family of convolution-mixed negative binomial distribution functions. Mitt. Verein. schweiz. Versich.-Mathr. 71, 71-94. Seal, H. (1974) The numerical calculation of U(w,t), the probability of non-ruin in an interual (a,t). Sean. Aet. Journal, 121-139. Seal, H. (1977) Numerical inversion of chamcteristic functions. Sean. Aet. Journal,48-53. Thorin, O. (1970). Some remarks on the ruinproblem in case the epochs of claims form a renewal process. Skanclinavisk Aktuarietidslrrift. 29-50. Thorin, O. (1971). Further remarks on the ruin problem in case the epochs of claims form a renewal process. Skandinavisk Aktuarietidskrift. 14-38, 121-142. Thorin, O. (1973). The ruin problem in case the tail of a distribution is completely monotone. Skandinavisk Aktuarietidslrrift. 100-119. Thorin, O. (1977). Ruin probabilities prepared for numerical calculation. Seandinavian Actuarial Journal. Thorin, O. (1977). On the infinite divisibility of the Pareto distribution. Sean. Act. Jomnal. 31-40. Thorin, O. (1977). On the infinite divisibility of the Lognormal distribution. Sean. Act. Jomnal. 121-148. Thorin, O. (1978). An extension of the notion of a generalized r-convolution. Sean. Act. Journal. 141-149. Thorin, O. and Wikstad, N. (1973). Numerical evaluation of ruin probabilities for a finite periodo ASTIN Bulletin VII:2, 138-153. Wikstad,N. (1971) Exemplifications of ruin probabilities. ASTIN Bulletín, vol. VI, part 2. Wikstad, N. (1977). How to calculate Ruin probabilities according to the classical Risk Theory. Scand. Actuarial Journal.