Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Calculating ultimate non-ruin probabilities when claim sizes follow a generalized r-convolution distribution function

dc.contributor.authorUsábel Rodrigo, Miguel Arturo
dc.date.accessioned2023-06-21T01:36:16Z
dc.date.available2023-06-21T01:36:16Z
dc.date.issued1998
dc.description.abstractThe non-ruin probability, for initial reserves u, in the classical can be calculated using the so-called Bromwich-Mellin inversion formula, an outstanding result from Residues Theory first introduced for these purposes by Seal(1977) for exponential claim size. We will use this technique when claim sizes follow a generalized r-convolution function distribution. Some of the most frequently used heavy-tailed distributions in actuarial science belongs to this family. Thorin(1977) or Berg(1981) proved that Pareto distributions are members of this family; so Thorin(1977) did with Log-normal distributions.
dc.description.departmentDecanato
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27083
dc.identifier.issn2255-5471
dc.identifier.relatedurlhttps://economicasyempresariales.ucm.es/working-papers-ccee
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64132
dc.issue.number02
dc.language.isoeng
dc.page.total10
dc.publication.placeMadrid
dc.publisherFacultad de Ciencias Económicas y Empresariales. Decanato
dc.relation.ispartofseriesDocumentos de Trabajo de la Facultad de Ciencias Económicas y Empresariales
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.subject.keywordUltimate non-ruin probability
dc.subject.keywordLaplace transforms
dc.subject.keywordBromwich-Mellin inversion formula
dc.subject.keywordGerenalized r-convolution functions.
dc.subject.ucmProbabilidades (Matemáticas)
dc.titleCalculating ultimate non-ruin probabilities when claim sizes follow a generalized r-convolution distribution function
dc.typetechnical report
dc.volume.number1998
dcterms.referencesBoas, R. (1987) Invitation to complex analysis. The Random House/Birkhauser mathematics series. New York. Bohman, H. (1971) Ruin probabilities. Skandinavisk Aktuarietidskrift. 159-163. Bohman, H. (1974) Fouricr Invcrsion-Distribution functions-Long tails. Scand. Actuarial Journal 43-45. Bohman, H. (1975) Numerical inversion of characteristic functions. Sean. Act. JournaL 121-124. Berg, C. (1981). The Pareto distribution is a generalized r-convolution-a new proof. Sean. Act. Journal. 117-119. Conway, J. (1978) Punctions of one complex variable I. Second edition. Springer-Verlag. New York. Cramer, H. (1955) Collective Risk Theory. Jubille Volume of F. Skandia. Goovaerts, M., D'Hooge, L., De Pril, N. (1977). On a class of generalized r-convolutions. Sean. Act. Journal. 21-30. Piessens, R. (1969) New quadrature formulas for the numerical inversion of Laplace tmnsforms. BIT 9, 351-361. Seal, H. (1971) Numerical calculation of the Bohman-Esscher family of convolution-mixed negative binomial distribution functions. Mitt. Verein. schweiz. Versich.-Mathr. 71, 71-94. Seal, H. (1974) The numerical calculation of U(w,t), the probability of non-ruin in an interual (a,t). Sean. Aet. Journal, 121-139. Seal, H. (1977) Numerical inversion of chamcteristic functions. Sean. Aet. Journal,48-53. Thorin, O. (1970). Some remarks on the ruinproblem in case the epochs of claims form a renewal process. Skanclinavisk Aktuarietidslrrift. 29-50. Thorin, O. (1971). Further remarks on the ruin problem in case the epochs of claims form a renewal process. Skandinavisk Aktuarietidskrift. 14-38, 121-142. Thorin, O. (1973). The ruin problem in case the tail of a distribution is completely monotone. Skandinavisk Aktuarietidslrrift. 100-119. Thorin, O. (1977). Ruin probabilities prepared for numerical calculation. Seandinavian Actuarial Journal. Thorin, O. (1977). On the infinite divisibility of the Pareto distribution. Sean. Act. Jomnal. 31-40. Thorin, O. (1977). On the infinite divisibility of the Lognormal distribution. Sean. Act. Jomnal. 121-148. Thorin, O. (1978). An extension of the notion of a generalized r-convolution. Sean. Act. Journal. 141-149. Thorin, O. and Wikstad, N. (1973). Numerical evaluation of ruin probabilities for a finite periodo ASTIN Bulletin VII:2, 138-153. Wikstad,N. (1971) Exemplifications of ruin probabilities. ASTIN Bulletín, vol. VI, part 2. Wikstad, N. (1977). How to calculate Ruin probabilities according to the classical Risk Theory. Scand. Actuarial Journal.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
9802.pdf
Size:
223.76 KB
Format:
Adobe Portable Document Format