Self-interactions of the lightest minimal supersymmetric standard model Higgs boson in the large pseudoscalar-mass limit

Thumbnail Image
Full text at PDC
Publication Date
Herrero, M. J.
Hollik, W.
Peñaranda , Siannah
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
We investigate the decoupling properties of the Higgs-sector-induced one-loop corrections in the lightest Higgs-boson self-couplings, in the framework of the minimal supersymmetric standard model (MSSM). The renormalized n-point vertex functions with external Higgs particles in the MSSM and in the SM are derived to the one-loop level and compared in the M(A)(0)much greater thanM(Z) limit. The computation has been done in a general R-xi gauge and the on-shell renormalization scheme is chosen. By a comparison of the renormalized lightest Higgs-boson h(0) vertex functions with respect to the corresponding SM ones, we find that the differences between the predictions of both models are summarized in the lightest Higgs-boson mass correction DeltaM(h)(0). Consequently, the radiative corrections are absorbed in the Higgs-boson mass, and the trilinear and quartic h(0) self-couplings acquire the same structure as the couplings of the SM Higgs boson. Therefore, decoupling of the heavy MSSM Higgs bosons occurs and the MSSM h(0) self-interactions converge to the SM ones in the M(A)(0)much greater thanM(Z) limit.
©2002 The American Physical Society. The work of S.P. was supported by the Fundación Ramón Areces. Support by the European Union under HPRN-CT-2000-00149 and by the Spanish Ministerio de Ciencia y Tecnología under CICYT projects FPA 2000-0980, FPA 2000-0956 and PB98-0782 is gratefully acknowledged.
Unesco subjects
1. M. Carena et al., hep-ph/0010338; D. Cavalli et al., hep-ph/0203056; ECFA/DESY LC Physics Working Group Collaboration, J. A. Aguilar-Saavedra et al., hep-ph/0106315. 2. J. F. Gunion, H. E. Haber, G. Kane, and S. Dawson, The Higgs Hunter’s Guide (Addison-Wesley, Reading, MA, 1990); hep-ph/9302272(E). 3. H. E. Haber, in ‘‘The Decay Properties of SUSY Particles,’’ Proceedings of the 23rd Workshop on the INFN Eloisatron Project, Erice, 1992, pp. 321–372, hep-ph/9305248. 4. V. Barger, M. S. Berger, A. L. Stange, and R. J. Phillips, Phys. Rev. D 45, 4128 (1992). 5. P. Osland and P. N. Pandita, Phys. Rev. D 59, 055013 (1999); hep-ph/9911295; hep-ph/9902270. 6. A. Djouadi, W. Kilian, M. Mühlleitner, and P. M. Zerwas, Eur. Phys. J. C 10, 27 (1999); hep-ph/0001169; M. Mühlleitner, hep-ph/0101262; Ph.D. thesis, Hamburg University, hep-ph/0008127. 7. A. Djouadi, H. E. Haber, and P. M. Zerwas, Phys. Lett. B 375, 203 (1996). 8. T. Plehn, M. Spira, and P. M. Zerwas, Nucl. Phys. B479, 46 (1996); B531, 655(E) (1996); R. Lafaye, D. J. Miller, M. Mühlleitner, and S. Moretti, hep-ph/0002238. 9. W. Hollik and S. Peñaranda, Eur. Phys. J. C 23, 163 (2002). 10. F. Boudjema and A. Semenov, Phys. Rev. D (to be published), hep-ph/0201219. 11. A. Dobado, M. J. Herrero, and S. Peñaranda, Eur. Phys. J. C 7, 313 (1999); 12, 673 (2000); 17, 487 (2000). 12. A. Dobado, M. J. Herrero, and S. Peñaranda, in Proceedings of the Workshop on Quantum Effects in the Minimal Supersymmetric Standard Model, Barcelona, 1997, edited by J. Solá (World Scientific, Singapore, 1998), hep-ph/9711441; contribution to the 29th International Conference on High-Energy Physics, Vancouver, 1998, Report No. FTUAM-98-1, hep-ph/9806488. 13. H. Georgi, Annu. Rev. Nucl. Part. Sci. 43, 209 (1993); M. J. Herrero and E. Ruiz Morales, Nucl. Phys. B418, 431 (1994); B437, 319 (1995). 14. T. Appelquist and J. Carazzone, Phys. Rev. D 11, 2856 (1975). 15. T. Hahn and M. Pérez-Victoria, Comput. Phys. Commun. 118, 153 (1999); T. Hahn, ibid. 140, 418 (2001); T. Hahn and C. Schappacher, ibid. 143, 54 (2002). 16. G. ’t Hooft and M. Veltman, Nucl. Phys. B153, 365 (1979); G. Passarino and M. Veltman, ibid. B160, 151 (1979). 17. A. Denner, Fortschr. Phys. 41, 307 (1993). 18. A. Dabelstein, Z. Phys. C 67, 495 (1995); Nucl. Phys. B456, 25 (1995). 19. P. H. Chankowski et al., Nucl. Phys. B417, 101 (1994); P. Chankowski, S. Pokorski, and J. Rosiek, ibid. B423, 437 (1994). 20. J. Fleischer and F. Jegerlehner, Phys. Rev. D 23, 2001 (1981). 21. M. Böhm, H. Spiesberger, and W. Hollik, Fortschr. Phys. 34, 687 (1986); W. Hollik, ibid. 38, 165 (1990). 22. P. H. Chankowski, S. Pokorski, and J. Rosiek, Phys. Lett. B 274, 191 (1992); A. Brignole, ibid. 281, 284 (1992); D. M. Pierce, J. A. Bagger, K. Matchev, and R. Zhang, Nucl. Phys. B491, 3 (1997). 23. S. Heinemeyer, W. Hollik, and G. Weiglein, Phys. Lett. B 440, 296 (1998); Phys. Rev. D 58, 091701 (1998); Phys. Lett. B 455, 179 (1999); Acta Phys. Pol. B 30, 1985 (1999); Eur. Phys. J. C 9, 343 (1999); Comput. Phys. Commun. 124, 76 (2000); J. R. Espinosa and R. J. Zhang, J. High Energy Phys. 03, 026 (2000); Nucl. Phys. B586, 3 (2000); M. Carena et al., ibid. B580, 29 (2000); G. Degrassi, P. Slavich, and F. Zwirner, ibid. B611, 403 (2001); A. Brignole, G. Degrassi, P. Slavich, and F. Zwirner, ibid. B631, 195 (2002).