Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Self-interactions of the lightest minimal supersymmetric standard model Higgs boson in the large pseudoscalar-mass limit

dc.contributor.authorDobado González, Antonio
dc.contributor.authorHerrero, M. J.
dc.contributor.authorHollik, W.
dc.contributor.authorPeñaranda , Siannah
dc.date.accessioned2023-06-20T18:47:58Z
dc.date.available2023-06-20T18:47:58Z
dc.date.issued2002-11-01
dc.description©2002 The American Physical Society. The work of S.P. was supported by the Fundación Ramón Areces. Support by the European Union under HPRN-CT-2000-00149 and by the Spanish Ministerio de Ciencia y Tecnología under CICYT projects FPA 2000-0980, FPA 2000-0956 and PB98-0782 is gratefully acknowledged.
dc.description.abstractWe investigate the decoupling properties of the Higgs-sector-induced one-loop corrections in the lightest Higgs-boson self-couplings, in the framework of the minimal supersymmetric standard model (MSSM). The renormalized n-point vertex functions with external Higgs particles in the MSSM and in the SM are derived to the one-loop level and compared in the M(A)(0)much greater thanM(Z) limit. The computation has been done in a general R-xi gauge and the on-shell renormalization scheme is chosen. By a comparison of the renormalized lightest Higgs-boson h(0) vertex functions with respect to the corresponding SM ones, we find that the differences between the predictions of both models are summarized in the lightest Higgs-boson mass correction DeltaM(h)(0). Consequently, the radiative corrections are absorbed in the Higgs-boson mass, and the trilinear and quartic h(0) self-couplings acquire the same structure as the couplings of the SM Higgs boson. Therefore, decoupling of the heavy MSSM Higgs bosons occurs and the MSSM h(0) self-interactions converge to the SM ones in the M(A)(0)much greater thanM(Z) limit.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipFundación Ramón Areces
dc.description.sponsorshipEuropean Union
dc.description.sponsorshipMinisterio de Ciencia y Tecnología
dc.description.sponsorshipCICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22242
dc.identifier.doi10.1103/PhysRevD.66.095016
dc.identifier.issn0556-2821
dc.identifier.officialurlhttp://prd.aps.org/abstract/PRD/v66/i9/e095016
dc.identifier.relatedurlhttp://prd.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58650
dc.issue.number9
dc.journal.titlePhysical Review D
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDHPRN-CT-2000-00149
dc.relation.projectIDFPA 2000-0980
dc.relation.projectIDFPA 2000-0956
dc.relation.projectIDPB98-0782
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordEffective-Field Theory
dc.subject.keywordOne-Loop Level
dc.subject.keywordRadiative-Corrections
dc.subject.keyword2-Loop Level
dc.subject.keywordMssm
dc.subject.keywordRenormalization
dc.subject.keywordDecays
dc.subject.keywordSector
dc.subject.keywordColliders
dc.subject.keywordParticles
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleSelf-interactions of the lightest minimal supersymmetric standard model Higgs boson in the large pseudoscalar-mass limit
dc.typejournal article
dc.volume.number66
dcterms.references1. M. Carena et al., hep-ph/0010338; D. Cavalli et al., hep-ph/0203056; ECFA/DESY LC Physics Working Group Collaboration, J. A. Aguilar-Saavedra et al., hep-ph/0106315. 2. J. F. Gunion, H. E. Haber, G. Kane, and S. Dawson, The Higgs Hunter’s Guide (Addison-Wesley, Reading, MA, 1990); hep-ph/9302272(E). 3. H. E. Haber, in ‘‘The Decay Properties of SUSY Particles,’’ Proceedings of the 23rd Workshop on the INFN Eloisatron Project, Erice, 1992, pp. 321–372, hep-ph/9305248. 4. V. Barger, M. S. Berger, A. L. Stange, and R. J. Phillips, Phys. Rev. D 45, 4128 (1992). 5. P. Osland and P. N. Pandita, Phys. Rev. D 59, 055013 (1999); hep-ph/9911295; hep-ph/9902270. 6. A. Djouadi, W. Kilian, M. Mühlleitner, and P. M. Zerwas, Eur. Phys. J. C 10, 27 (1999); hep-ph/0001169; M. Mühlleitner, hep-ph/0101262; Ph.D. thesis, Hamburg University, hep-ph/0008127. 7. A. Djouadi, H. E. Haber, and P. M. Zerwas, Phys. Lett. B 375, 203 (1996). 8. T. Plehn, M. Spira, and P. M. Zerwas, Nucl. Phys. B479, 46 (1996); B531, 655(E) (1996); R. Lafaye, D. J. Miller, M. Mühlleitner, and S. Moretti, hep-ph/0002238. 9. W. Hollik and S. Peñaranda, Eur. Phys. J. C 23, 163 (2002). 10. F. Boudjema and A. Semenov, Phys. Rev. D (to be published), hep-ph/0201219. 11. A. Dobado, M. J. Herrero, and S. Peñaranda, Eur. Phys. J. C 7, 313 (1999); 12, 673 (2000); 17, 487 (2000). 12. A. Dobado, M. J. Herrero, and S. Peñaranda, in Proceedings of the Workshop on Quantum Effects in the Minimal Supersymmetric Standard Model, Barcelona, 1997, edited by J. Solá (World Scientific, Singapore, 1998), hep-ph/9711441; contribution to the 29th International Conference on High-Energy Physics, Vancouver, 1998, Report No. FTUAM-98-1, hep-ph/9806488. 13. H. Georgi, Annu. Rev. Nucl. Part. Sci. 43, 209 (1993); M. J. Herrero and E. Ruiz Morales, Nucl. Phys. B418, 431 (1994); B437, 319 (1995). 14. T. Appelquist and J. Carazzone, Phys. Rev. D 11, 2856 (1975). 15. T. Hahn and M. Pérez-Victoria, Comput. Phys. Commun. 118, 153 (1999); T. Hahn, ibid. 140, 418 (2001); T. Hahn and C. Schappacher, ibid. 143, 54 (2002). 16. G. ’t Hooft and M. Veltman, Nucl. Phys. B153, 365 (1979); G. Passarino and M. Veltman, ibid. B160, 151 (1979). 17. A. Denner, Fortschr. Phys. 41, 307 (1993). 18. A. Dabelstein, Z. Phys. C 67, 495 (1995); Nucl. Phys. B456, 25 (1995). 19. P. H. Chankowski et al., Nucl. Phys. B417, 101 (1994); P. Chankowski, S. Pokorski, and J. Rosiek, ibid. B423, 437 (1994). 20. J. Fleischer and F. Jegerlehner, Phys. Rev. D 23, 2001 (1981). 21. M. Böhm, H. Spiesberger, and W. Hollik, Fortschr. Phys. 34, 687 (1986); W. Hollik, ibid. 38, 165 (1990). 22. P. H. Chankowski, S. Pokorski, and J. Rosiek, Phys. Lett. B 274, 191 (1992); A. Brignole, ibid. 281, 284 (1992); D. M. Pierce, J. A. Bagger, K. Matchev, and R. Zhang, Nucl. Phys. B491, 3 (1997). 23. S. Heinemeyer, W. Hollik, and G. Weiglein, Phys. Lett. B 440, 296 (1998); Phys. Rev. D 58, 091701 (1998); Phys. Lett. B 455, 179 (1999); Acta Phys. Pol. B 30, 1985 (1999); Eur. Phys. J. C 9, 343 (1999); Comput. Phys. Commun. 124, 76 (2000); J. R. Espinosa and R. J. Zhang, J. High Energy Phys. 03, 026 (2000); Nucl. Phys. B586, 3 (2000); M. Carena et al., ibid. B580, 29 (2000); G. Degrassi, P. Slavich, and F. Zwirner, ibid. B611, 403 (2001); A. Brignole, G. Degrassi, P. Slavich, and F. Zwirner, ibid. B631, 195 (2002).
dspace.entity.typePublication
relation.isAuthorOfPublication16523fad-99a9-422c-9a8e-c949ccffadec
relation.isAuthorOfPublication.latestForDiscovery16523fad-99a9-422c-9a8e-c949ccffadec

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DobadoAntonio46libre.pdf
Size:
177.54 KB
Format:
Adobe Portable Document Format

Collections