Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Bidiagonal factorization of tetradiagonal matrices and Darboux transformations

Loading...
Thumbnail Image

Full text at PDC

Publication date

2023

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Basel AG
Citations
Google Scholar

Citation

Abstract

Recently a spectral Favard theorem for bounded banded lower Hessenberg matrices that admit a positive bidiagonal factorization was presented. These type of matrices are oscillatory. In this paper the Lima-Loureiro hypergeometric multiple orthogonal polynomials and the Jacobi-Pineiro multiple orthogonal polynomials are discussed at the light of this bidiagonal factorization for tetradiagonal matrices. The Darboux transformations of tetradiagonal Hessenberg matrices is studied and Christoffel formulas for the elements of the bidiagonal factorization are given, i.e., the bidiagonal factorization is given in terms of the recursion polynomials evaluated at the origin.

Research Projects

Organizational Units

Journal Issue

Description

CRUE-CSIC (Acuerdos Transformativos 2023) © The Author(s) 2023 Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Amilcar Branquinho thanks Centre for Mathematics of the University of Coimbra-UIDB/00324/2020 (funded by the Portuguese Government through FCT/MCTES) and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020Ana Foulquie acknowledges Center for Research & Development in Mathematics and Applications, supported through the Portuguese Foundation for Science and Technology (FCT- Fundacao para a Ciencia e a Tecnologia), references UIDB/04106/2020 and UIDP/04106/2020. Manuel Manas: Thanks financial support from the Spanish "Agencia Estatal de Investigacion" research project [PGC2018-096504-B-C33], Ortogonalidad y Aproximacion: Teoria y Aplicaciones en Fisica Matematica and [PID2021- 122154NB-I00], Ortogonalidad y Aproximacion con Aplicaciones en Machine Learning y Teoria de la Probabilidad.

Unesco subjects

Keywords

Collections