Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Bidiagonal factorization of tetradiagonal matrices and Darboux transformations

dc.contributor.authorBranquinho, Amilcar
dc.contributor.authorFoulquié Moreno, Ana
dc.contributor.authorMañas Baena, Manuel Enrique
dc.date.accessioned2023-06-22T11:19:13Z
dc.date.available2023-06-22T11:19:13Z
dc.date.issued2023-06
dc.descriptionCRUE-CSIC (Acuerdos Transformativos 2023) © The Author(s) 2023 Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Amilcar Branquinho thanks Centre for Mathematics of the University of Coimbra-UIDB/00324/2020 (funded by the Portuguese Government through FCT/MCTES) and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020Ana Foulquie acknowledges Center for Research & Development in Mathematics and Applications, supported through the Portuguese Foundation for Science and Technology (FCT- Fundacao para a Ciencia e a Tecnologia), references UIDB/04106/2020 and UIDP/04106/2020. Manuel Manas: Thanks financial support from the Spanish "Agencia Estatal de Investigacion" research project [PGC2018-096504-B-C33], Ortogonalidad y Aproximacion: Teoria y Aplicaciones en Fisica Matematica and [PID2021- 122154NB-I00], Ortogonalidad y Aproximacion con Aplicaciones en Machine Learning y Teoria de la Probabilidad.
dc.description.abstractRecently a spectral Favard theorem for bounded banded lower Hessenberg matrices that admit a positive bidiagonal factorization was presented. These type of matrices are oscillatory. In this paper the Lima-Loureiro hypergeometric multiple orthogonal polynomials and the Jacobi-Pineiro multiple orthogonal polynomials are discussed at the light of this bidiagonal factorization for tetradiagonal matrices. The Darboux transformations of tetradiagonal Hessenberg matrices is studied and Christoffel formulas for the elements of the bidiagonal factorization are given, i.e., the bidiagonal factorization is given in terms of the recursion polynomials evaluated at the origin.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)/AEI
dc.description.sponsorshipMinisterio de Cienncia e Innovación (MICINN)
dc.description.sponsorshipFundação para a Ciência e a Tecnologia (FCT)
dc.description.sponsorshipCenter for Mathematics of the University of Coimbra
dc.description.sponsorshipPortuguese Government through FCT/MCTES
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/78376
dc.identifier.doi10.1007/s13324-023-00801-1
dc.identifier.issn1664-2368
dc.identifier.officialurlhttp://dx.doi.org/10.1007/s13324-023-00801-1
dc.identifier.relatedurlhttps://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/72313
dc.issue.number3
dc.journal.titleAnalysis and mathematical physics
dc.language.isoeng
dc.publisherSpringer Basel AG
dc.relation.projectIDPID2021- 122154NB-I00
dc.relation.projectIDPGC2018-096504-B-C33
dc.relation.projectID(UIDB/04106/2020; UIDP/04106/2020)
dc.relation.projectIDUIDB/00324/2020
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu51-73
dc.subject.keywordTetradiagonal Hessenberg matrices
dc.subject.keywordOscillatory matrices
dc.subject.keywordTotally nonnegative matrices
dc.subject.keywordMultiple orthogonal polynomials
dc.subject.keywordFavard spectral representation
dc.subject.keywordDarboux transformations
dc.subject.keywordChristoffel formulas
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleBidiagonal factorization of tetradiagonal matrices and Darboux transformations
dc.typejournal article
dc.volume.number13
dspace.entity.typePublication
relation.isAuthorOfPublication0d5b5872-7553-4b33-b0e5-085ced5d8f42
relation.isAuthorOfPublication.latestForDiscovery0d5b5872-7553-4b33-b0e5-085ced5d8f42

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mañas82 + CC.pdf
Size:
552.3 KB
Format:
Adobe Portable Document Format

Collections