Thermal equilibrium in de Sitter space

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Soc
Google Scholar
Research Projects
Organizational Units
Journal Issue
Thermal-equilibrium quantum states are constructed for free scalar fields in (%+1)-dimensional de Sitter space. The states are described by density matrices of "thermal" form, satisfying the von Neumann equation associated with the appropriate functional Schrodinger equation. These solutions exist only for fields with mass and/or curvature coupling corresponding to conformal invariance. The temperature associated with such a state obeys the classical red-shift law. States exist with any temperature value at any given time; the zero-temperature limit is the Euclidean vacuum state. The total field energy of a thermal state above that of the Euclidean vacuum is finite and positive. This excitation energy consists of one contribution which red-shifts classically, but-it can also contain a contribution which grows in time as the radius of the space.
© 1989 The American Physical Society. F.R.R. is grateful to Professor Stephen Hawking and the Department of Applied Mathematics and Theoretical Physics for their hospitality in Cambridge, and to the Spanish Ministry of Education and The British Council for financial support. Support for I. H. R. was provided by the United Kingdom Science and Engineering Research Council.
Unesco subjects
1 J. S. Dowker and R. Critchley, Phys. Rev. 0 15, 1484 (1977). 2 G. W. Gibbons and M. J. Perry, Proc. R. Soc. London A358, 467 (1978). 3 J. S. Dowker and G. Kennedy, J. Phys. A 11, 895 (1978). 4 M. B.Altaie and J. S. Dowker, Phys. Rev. D 18, 3557 (1978). 5 R. Critchley, P. C. W. Davies, and G. Kennedy, Phys. Lett. 1128, 331 (1982). 6 G. Kennedy, J. Phys. A 11, L77 (1978). 7 8. L. Hu, Phys. Lett. 1038, 331 (1981). 8 B. L. Hu, Phys. Lett. 1088, 19 (1982). 9 I. T. Drummond, Nucl. Phys. 8190, 93 (1981). 10 B. L. Hu, in The Very Early Uniuerse, edited by G. W. Gibbons, S. W. Hawking, and S. T. C. Siklos (Cambridge University Press, Cambridge, England, 1983), pp. 343—352. 11 B.L. Hu, Phys. Lett. 1238, 189 (1983). 12 G. Semenoff and N. Weiss, Phys. Rev. D 31, 689 (1985). 13 L. F. Chen and B.L. Hu, Phys. Lett. 1608, 36 (1985). 14 B. L. Hu, R. Critchley, and A. Stylianopoulos, Phys. Rev. D 35, 510 (1987). 15 O. Eboli, R. Jackiw, and S.-Y. Pi, Phys. Rev. D 37, 3557 (1988). 16 A. H. Guth, Phys. Rev. D 23, 347 (1981). 17 K. Freese, C. T. Hill, and M. Mueller, Nucl. Phys. 8255, 693 (1985). 18 B.Ratra, Phys. Rev. D 31, 1931 (1985). 19 S. Wada, Phys. Rev. Lett. 59, 2375 (1987). 20 C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973), frontispiece. 21 M. Gutzwiller, Helv. Phys. Acta 29, 313 (1956). 22 N. A. Chernikov and E. A. Tagirov, Ann. Inst. Henri Poincare 9, 109 (1968). 23 I. H. Redrnount and S. Takagi, Phys. Rev. D 37, 1443 (1988). 24 N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982), pp. 87 and 88. 25 J. Traschen and C. T. Hill, Phys. Rev. D 33, 3519 (1986). 26 Higher Transcendenta/ Functions (Bateman Manuscript Project), edited by A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (McGraw-Hill, New York, 1953), Vol. II, pp. 232-242. 27 Birrell and Davies, Quantum Fields in Curved Space {Ref.24), p. 44 28 H. E. Kandrup, Phys. Rev. D 37, 3505 (1988). 29 R. P. Feynman, Statistica/ Mechanics (Benjamin, Reading, MA, 1972), p. 51. 30 B.Allen, Phys. Rev. D 32, 3136 (1985). 31 M. S. Turner and L. M. Widrow, Phys. Rev. D 37, 3428 (1988). 32 G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2738 (1977). 33 A. Vilenkin and L. H. Ford, Phys. Rev. D 26, 1231 (1982