Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Thermal equilibrium in de Sitter space

dc.contributor.authorRuiz Ruiz, Fernando
dc.contributor.authorRedmount, Ian H.
dc.date.accessioned2023-06-20T18:59:09Z
dc.date.available2023-06-20T18:59:09Z
dc.date.issued1989-04-15
dc.description© 1989 The American Physical Society. F.R.R. is grateful to Professor Stephen Hawking and the Department of Applied Mathematics and Theoretical Physics for their hospitality in Cambridge, and to the Spanish Ministry of Education and The British Council for financial support. Support for I. H. R. was provided by the United Kingdom Science and Engineering Research Council.
dc.description.abstractThermal-equilibrium quantum states are constructed for free scalar fields in (%+1)-dimensional de Sitter space. The states are described by density matrices of "thermal" form, satisfying the von Neumann equation associated with the appropriate functional Schrodinger equation. These solutions exist only for fields with mass and/or curvature coupling corresponding to conformal invariance. The temperature associated with such a state obeys the classical red-shift law. States exist with any temperature value at any given time; the zero-temperature limit is the Euclidean vacuum state. The total field energy of a thermal state above that of the Euclidean vacuum is finite and positive. This excitation energy consists of one contribution which red-shifts classically, but-it can also contain a contribution which grows in time as the radius of the space.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipEspaña. Ministerio de Educación
dc.description.sponsorshipBritish Council
dc.description.sponsorshipUnited Kingdom Science and Engineering Research Council.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25491
dc.identifier.doi10.1103/PhysRevD.39.2289
dc.identifier.issn0556-2821
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.39.2289
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59048
dc.issue.number8
dc.journal.titlePhysical Review D
dc.language.isoeng
dc.page.final2296
dc.page.initial2289
dc.publisherAmerican Physical Soc
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordAstronomy & Astrophysics
dc.subject.keywordPhysics
dc.subject.keywordParticles & Fields
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleThermal equilibrium in de Sitter space
dc.typejournal article
dc.volume.number39
dcterms.references1 J. S. Dowker and R. Critchley, Phys. Rev. 0 15, 1484 (1977). 2 G. W. Gibbons and M. J. Perry, Proc. R. Soc. London A358, 467 (1978). 3 J. S. Dowker and G. Kennedy, J. Phys. A 11, 895 (1978). 4 M. B.Altaie and J. S. Dowker, Phys. Rev. D 18, 3557 (1978). 5 R. Critchley, P. C. W. Davies, and G. Kennedy, Phys. Lett. 1128, 331 (1982). 6 G. Kennedy, J. Phys. A 11, L77 (1978). 7 8. L. Hu, Phys. Lett. 1038, 331 (1981). 8 B. L. Hu, Phys. Lett. 1088, 19 (1982). 9 I. T. Drummond, Nucl. Phys. 8190, 93 (1981). 10 B. L. Hu, in The Very Early Uniuerse, edited by G. W. Gibbons, S. W. Hawking, and S. T. C. Siklos (Cambridge University Press, Cambridge, England, 1983), pp. 343—352. 11 B.L. Hu, Phys. Lett. 1238, 189 (1983). 12 G. Semenoff and N. Weiss, Phys. Rev. D 31, 689 (1985). 13 L. F. Chen and B.L. Hu, Phys. Lett. 1608, 36 (1985). 14 B. L. Hu, R. Critchley, and A. Stylianopoulos, Phys. Rev. D 35, 510 (1987). 15 O. Eboli, R. Jackiw, and S.-Y. Pi, Phys. Rev. D 37, 3557 (1988). 16 A. H. Guth, Phys. Rev. D 23, 347 (1981). 17 K. Freese, C. T. Hill, and M. Mueller, Nucl. Phys. 8255, 693 (1985). 18 B.Ratra, Phys. Rev. D 31, 1931 (1985). 19 S. Wada, Phys. Rev. Lett. 59, 2375 (1987). 20 C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973), frontispiece. 21 M. Gutzwiller, Helv. Phys. Acta 29, 313 (1956). 22 N. A. Chernikov and E. A. Tagirov, Ann. Inst. Henri Poincare 9, 109 (1968). 23 I. H. Redrnount and S. Takagi, Phys. Rev. D 37, 1443 (1988). 24 N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982), pp. 87 and 88. 25 J. Traschen and C. T. Hill, Phys. Rev. D 33, 3519 (1986). 26 Higher Transcendenta/ Functions (Bateman Manuscript Project), edited by A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (McGraw-Hill, New York, 1953), Vol. II, pp. 232-242. 27 Birrell and Davies, Quantum Fields in Curved Space {Ref.24), p. 44 28 H. E. Kandrup, Phys. Rev. D 37, 3505 (1988). 29 R. P. Feynman, Statistica/ Mechanics (Benjamin, Reading, MA, 1972), p. 51. 30 B.Allen, Phys. Rev. D 32, 3136 (1985). 31 M. S. Turner and L. M. Widrow, Phys. Rev. D 37, 3428 (1988). 32 G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2738 (1977). 33 A. Vilenkin and L. H. Ford, Phys. Rev. D 26, 1231 (1982
dspace.entity.typePublication
relation.isAuthorOfPublication00879a8b-f834-4645-adb9-01e259407707
relation.isAuthorOfPublication.latestForDiscovery00879a8b-f834-4645-adb9-01e259407707

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ruiz FR31libre.pdf
Size:
393.15 KB
Format:
Adobe Portable Document Format

Collections