Static versus dynamic heterogeneities in the D=3 Edwards-Anderson-ising spin glass

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
We numerically study the aging properties of the dynamical heterogeneities in the Ising spin glass. We find that a phase transition takes place during the aging process. Statics-dynamics correspondence implies that systems of finite size in equilibrium have static heterogeneities that obey finite-size scaling, thus signaling an analogous phase transition in the thermodynamical limit. We compute the critical exponents and the transition point in the equilibrium setting, and use them to show that aging in dynamic heterogeneities can be described by a finite-time scaling ansatz, with potential implications for experimental work.
© 2010 The American Physical Society. Artículo firmado por 21 autores. The Janus computer was funded by EU FEDER (UNZA05 33-003, MEC-DGA, Spain) and developed in collaboration with ETHlab. We were partially supported by MICINN (Spain), through Contracts No. TEC2007- 64188, No. FIS2007-60977, No. FIS2009-12648-C03, by Junta de Extremadura (GRU09038), and by UCM-Banco de Santander. B. S. and D. Y. were supported by the FPU program (Spain) and SPG by FECYT (Spain).
Unesco subjects
[1] A. Cavagna, Phys. Rep., 476, 51 (2009) -- P. G. Debenedetti, F. H. Stillinger, Nature (London), 410, 259 (2001). [2] G. Adam, J. H. Gibbs, J. Chem. Phys., 43, 139 (1965). [3] E. R. Weeks, et al., Science, 287, 627 (2000). [4] L. Berthier, et al., Science, 310, 1797 (2005). [5] E. Vincent, et al., in Complex Behavior of Glassy Systems, edited by M. Rubí and C. Pérez-Vicente, Lecture Notes in Physics, Vol. 492 (Springer, New York, 1997). [6] G. F. Rodríguez, G. G. Kenning, R. Orbach, Phys. Rev. Lett., 91, 037203 (2003). [7] V. Dupuis, et al., Pramana J. Phys., 64, 1109 (2005). [8] L. C. Jaubert, C. Chamon, L. F. Cugliandolo, M. Picco, J. Stat. Mech., (2007) P05001. [9] F. Belletti, et al. (Janus Collaboration), J. Stat. Phys., 135, 1121 (2009). [10] H. Oukris, N. E. Israeloff, Nature Phys., 6, 135 (2010). [11] K. Gunnarsson, et al., Phys. Rev. B, 43, 8199 (1991). [12] M. Palassini, S. Caracciolo, Phys. Rev. Lett., 82, 5128 (1999). [13] H. G. Ballesteros, et al., Phys. Rev. B, 62, 14 237 (2000). [14] Y. G. Joh, et al., Phys. Rev. Lett., 82, 438 (1999). [15] F. Bert, et al., Phys. Rev. Lett., 92, 167203 (2004). [16] S. Franz, M. Mézard, G. Parisi, L. Peliti, Phys. Rev. Lett., 81, 1758 (1998). [17] F. Belletti, et al. (Janus Collaboration), Phys. Rev. Lett., 101, 157201 (2008). [18] R. Álvarez Baños, et al. (Janus Collaboration), J. Stat. Mech., (2010) P06026. [19] A similar correspondence was constructed from the fluctuation-dissipation ratio in A. Barrat and L. Berthier, Phys. Rev. Lett., 87, 087204 (2001). [20] F. Belletti, et al. (Janus Collaboration), Comput. Sci. Eng., 8, 41 (2006). [21] L. F. Cugliandolo, J. Kurchan, Phys. Rev. Lett., 71, 173 (1993). [22] E. Marinari, et al., J. Stat. Phys., 98, 973 (2000). [23] A. J. Bray, M. A. Moore, in Heidelberg Colloquium on Glassy Dynamics, edited by J. L. van Hemmen and I. Morgenstern, Lecture Notes in Physics, Vol. 275 (Springer, Berlin, 1987). [24] P. Contucci, et al., Phys. Rev. Lett., 103, 017201 (2009). [25] L. A. Fernández, V. Martín-Mayor, D. Yllanes, Nucl. Phys. B, 807, 424 (2009). [26] D. J. Amit, V. Martín-Mayor, Field Theory, the Renormalization Group and Critical Phenomena (World Scientific, Singapore, 2005), 3rd ed. [27] S. Franz, G. Parisi, F. Ricci-Tersenghi, T. Rizzo, arXiv:1001.1746.