Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Smooth approximation of Lipschitz functions on Finsler manifolds

Loading...
Thumbnail Image

Full text at PDC

Publication date

2013

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Hindawi
Citations
Google Scholar

Citation

Abstract

We study the smooth approximation of Lipschitz functions on Finsler manifolds, keeping control on the corresponding Lipschitz constants. We prove that, given a Lipschitz function f : M -> R defined on a connected, second countable Finsler manifold M, for each positive continuous function epsilon : M -> (0, infinity) and each r > 0, there exists a C-1-smooth Lipschitz function g : M -> R such that vertical bar f(x) - g(x)vertical bar <= epsilon(x), for every x is an element of M, and Lip(g) <= Lip(f) + r. As a consequence, we derive a completeness criterium in the class of what we call quasi-reversible Finsler manifolds. Finally, considering the normed algebra C-b(1)(M) of all C-1 functions with bounded derivative on a complete quasi-reversible Finsler manifold M, we obtain a characterization of algebra isomorphisms T : C-b(1)(N) -> C-b(1)(M) as composition operators. From this we obtain a variant of Myers-Nakai Theorem in the context of complete reversible Finsler manifolds.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections