Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Smooth approximation of Lipschitz functions on Finsler manifolds

dc.contributor.authorGarrido, M. Isabel
dc.contributor.authorJaramillo Aguado, Jesús Ángel
dc.contributor.authorRangel, Yenny C.
dc.date.accessioned2023-06-19T13:22:06Z
dc.date.available2023-06-19T13:22:06Z
dc.date.issued2013
dc.description.abstractWe study the smooth approximation of Lipschitz functions on Finsler manifolds, keeping control on the corresponding Lipschitz constants. We prove that, given a Lipschitz function f : M -> R defined on a connected, second countable Finsler manifold M, for each positive continuous function epsilon : M -> (0, infinity) and each r > 0, there exists a C-1-smooth Lipschitz function g : M -> R such that vertical bar f(x) - g(x)vertical bar <= epsilon(x), for every x is an element of M, and Lip(g) <= Lip(f) + r. As a consequence, we derive a completeness criterium in the class of what we call quasi-reversible Finsler manifolds. Finally, considering the normed algebra C-b(1)(M) of all C-1 functions with bounded derivative on a complete quasi-reversible Finsler manifold M, we obtain a characterization of algebra isomorphisms T : C-b(1)(N) -> C-b(1)(M) as composition operators. From this we obtain a variant of Myers-Nakai Theorem in the context of complete reversible Finsler manifolds.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipD.G.I. (Spain) Grant
dc.description.sponsorship(CDCHT-UCLA) (Venezuela)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23180
dc.identifier.doi10.1155/2013/164571
dc.identifier.issn0972-6802
dc.identifier.officialurlhttp://www.hindawi.com/journals/jfsa/2013/164571/abs/
dc.identifier.relatedurlhttp://www.hindawi.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33358
dc.journal.titleJournal of function spaces and applications
dc.language.isoeng
dc.publisherHindawi
dc.relation.projectIDMTM2009-07848
dc.relation.projectID014-CT-2012
dc.rights.accessRightsopen access
dc.subject.cdu514.7
dc.subject.keywordRiemannian-manifolds
dc.subject.keywordisometries
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleSmooth approximation of Lipschitz functions on Finsler manifolds
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication8b6e753b-df15-44ff-8042-74de90b4e3e9
relation.isAuthorOfPublication.latestForDiscovery8b6e753b-df15-44ff-8042-74de90b4e3e9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Jaramillo200.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format

Collections