Smooth approximation of Lipschitz functions on Finsler manifolds
| dc.contributor.author | Garrido Carballo, María Isabel | |
| dc.contributor.author | Jaramillo Aguado, Jesús Ángel | |
| dc.contributor.author | Rangel, Yenny C. | |
| dc.date.accessioned | 2023-06-19T13:22:06Z | |
| dc.date.available | 2023-06-19T13:22:06Z | |
| dc.date.issued | 2013 | |
| dc.description | Supported in partby D.G.I. (Spain) Grant MTM2009-07848. Y. C. Rangel hasbeen associated to the Project 014-CT-2012 (CDCHT-UCLA)(Venezuela) | |
| dc.description.abstract | We study the smooth approximation of Lipschitz functions on Finsler manifolds, keeping control on the corresponding Lipschitz constants. We prove that, given a Lipschitz function f : M -> R defined on a connected, second countable Finsler manifold M, for each positive continuous function epsilon : M -> (0, infinity) and each r > 0, there exists a C-1-smooth Lipschitz function g : M -> R such that vertical bar f(x) - g(x)vertical bar <= epsilon(x), for every x is an element of M, and Lip(g) <= Lip(f) + r. As a consequence, we derive a completeness criterium in the class of what we call quasi-reversible Finsler manifolds. Finally, considering the normed algebra C-b(1)(M) of all C-1 functions with bounded derivative on a complete quasi-reversible Finsler manifold M, we obtain a characterization of algebra isomorphisms T : C-b(1)(N) -> C-b(1)(M) as composition operators. From this we obtain a variant of Myers-Nakai Theorem in the context of complete reversible Finsler manifolds. | |
| dc.description.department | Depto. de Álgebra, Geometría y Topología | |
| dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
| dc.description.refereed | TRUE | |
| dc.description.status | pub | |
| dc.eprint.id | https://eprints.ucm.es/id/eprint/23180 | |
| dc.identifier.citation | Garrido, M. I., et al. «Smooth Approximation of Lipschitz Functions on Finsler Manifolds». Journal of Function Spaces and Applications, vol. 2013, 2013, pp. 1-10. DOI.org (Crossref), https://doi.org/10.1155/2013/164571 | |
| dc.identifier.doi | 10.1155/2013/164571 | |
| dc.identifier.issn | 0972-6802 | |
| dc.identifier.officialurl | http://dx.doi.org/10.1155/2013/164571 | |
| dc.identifier.relatedurl | http://www.hindawi.com/ | |
| dc.identifier.relatedurl | http://www.hindawi.com/journals/jfsa/2013/164571/abs/ | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/33358 | |
| dc.journal.title | Journal of function spaces and applications | |
| dc.language.iso | eng | |
| dc.publisher | Hindawi | |
| dc.rights.accessRights | open access | |
| dc.subject.cdu | 514.7 | |
| dc.subject.keyword | Riemannian-manifolds | |
| dc.subject.keyword | isometries | |
| dc.subject.ucm | Geometría diferencial | |
| dc.subject.unesco | 1204.04 Geometría Diferencial | |
| dc.title | Smooth approximation of Lipschitz functions on Finsler manifolds | |
| dc.type | journal article | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | d581a19d-4879-4fd7-b6a8-5c766ec13ba0 | |
| relation.isAuthorOfPublication | 8b6e753b-df15-44ff-8042-74de90b4e3e9 | |
| relation.isAuthorOfPublication.latestForDiscovery | 8b6e753b-df15-44ff-8042-74de90b4e3e9 |
Download
Original bundle
1 - 1 of 1


