Smooth approximation of Lipschitz functions on Finsler manifolds

dc.contributor.authorGarrido, M. Isabel
dc.contributor.authorJaramillo Aguado, Jesús Ángel
dc.contributor.authorRangel, Yenny C.
dc.date.accessioned2023-06-19T13:22:06Z
dc.date.available2023-06-19T13:22:06Z
dc.date.issued2013
dc.description.abstractWe study the smooth approximation of Lipschitz functions on Finsler manifolds, keeping control on the corresponding Lipschitz constants. We prove that, given a Lipschitz function f : M -> R defined on a connected, second countable Finsler manifold M, for each positive continuous function epsilon : M -> (0, infinity) and each r > 0, there exists a C-1-smooth Lipschitz function g : M -> R such that vertical bar f(x) - g(x)vertical bar <= epsilon(x), for every x is an element of M, and Lip(g) <= Lip(f) + r. As a consequence, we derive a completeness criterium in the class of what we call quasi-reversible Finsler manifolds. Finally, considering the normed algebra C-b(1)(M) of all C-1 functions with bounded derivative on a complete quasi-reversible Finsler manifold M, we obtain a characterization of algebra isomorphisms T : C-b(1)(N) -> C-b(1)(M) as composition operators. From this we obtain a variant of Myers-Nakai Theorem in the context of complete reversible Finsler manifolds.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipD.G.I. (Spain) Grant
dc.description.sponsorship(CDCHT-UCLA) (Venezuela)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23180
dc.identifier.doi10.1155/2013/164571
dc.identifier.issn0972-6802
dc.identifier.officialurlhttp://www.hindawi.com/journals/jfsa/2013/164571/abs/
dc.identifier.relatedurlhttp://www.hindawi.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33358
dc.journal.titleJournal of function spaces and applications
dc.language.isoeng
dc.publisherHindawi
dc.relation.projectIDMTM2009-07848
dc.relation.projectID014-CT-2012
dc.rights.accessRightsopen access
dc.subject.cdu514.7
dc.subject.keywordRiemannian-manifolds
dc.subject.keywordisometries
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleSmooth approximation of Lipschitz functions on Finsler manifolds
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication8b6e753b-df15-44ff-8042-74de90b4e3e9
relation.isAuthorOfPublication.latestForDiscovery8b6e753b-df15-44ff-8042-74de90b4e3e9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Jaramillo200.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format

Collections