Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Pearson equations for discrete orthogonal polynomials: I. generalized hypergeometric functions and Toda equations

dc.contributor.authorMañas Baena, Manuel Enrique
dc.contributor.authorFernández Irisarri, Itsaso
dc.contributor.authorGonzález Hernández, Omar
dc.date.accessioned2023-06-16T14:18:26Z
dc.date.available2023-06-16T14:18:26Z
dc.date.issued2021-12
dc.descriptionCRUE-CSIC (Acuerdos Transformativos 2021) © 2021 The Authors. This work has its seed in several inspiring conversations with Diego Dominici during a research stay of MM at Johannes Kepler University at Linz. We are also grateful to the anonymous referees whose observations have improved the paper. We thank financial support from the Spanish “Agencia Estatal de Investigación” research project [PGC2018-096504-B-C33], Ortogonalidad y Aproximación: Teoría y Aplicaciones en Física Matemática.
dc.description.abstractThe Cholesky factorization of the moment matrix is applied to discrete orthogonal polynomials on the homogeneous lattice. In particular, semiclassical discrete orthogonal polynomials, which are built in terms of a discrete Pearson equation, are studied. The Laguerre-Freud structure semiinfinite matrix that models the shifts by +/- 1 in the independent variable of the set of orthogonal polynomials is introduced. In the semiclassical case it is proven that this Laguerre-Freud matrix is banded. From the well-known fact that moments of the semiclassical weights are logarithmic derivatives of generalized hypergeometric functions, it is shown how the contiguous relations for these hypergeometric functions translate as symmetries for the corresponding moment matrix. It is found that the 3D Nijhoff-Capel discrete Toda lattice describes the corresponding contiguous shifts for the squared norms of the orthogonal polynomials. The continuous 1D Toda equation for these semiclassical discrete orthogonal polynomials is discussed and the compatibility equations are derived. It is also shown that the Kadomtesev-Petviashvilii equation is connected to an adequate deformed semiclassical discrete weight, but in this case, the deformation does not satisfy a Pearson equation.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/69373
dc.identifier.doi10.1111/sapm.12471
dc.identifier.issn0022-2526
dc.identifier.officialurlhttp://dx.doi.org/10.1111/sapm.12471
dc.identifier.relatedurlhttps://onlinelibrary.wiley.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/4609
dc.journal.titleStudies in applied mathematics
dc.language.isoeng
dc.publisherWiley
dc.relation.projectIDPGC2018-096504-B-C33
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu51-73
dc.subject.keywordRecurrence coefficients
dc.subject.keywordLaurent polynomials
dc.subject.keywordUnit circle
dc.subject.keywordTransformations
dc.subject.keywordKP
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titlePearson equations for discrete orthogonal polynomials: I. generalized hypergeometric functions and Toda equations
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication0d5b5872-7553-4b33-b0e5-085ced5d8f42
relation.isAuthorOfPublication.latestForDiscovery0d5b5872-7553-4b33-b0e5-085ced5d8f42

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mañas76 + CC.pdf
Size:
705.4 KB
Format:
Adobe Portable Document Format

Collections