Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Characterizing Sobolev spaces of vector-valued functions

dc.contributor.authorCaamaño Aldemunde, Iván
dc.contributor.authorJaramillo Aguado, Jesús Ángel
dc.contributor.authorPrieto Yerro, M. Ángeles
dc.date.accessioned2023-06-22T10:42:03Z
dc.date.available2023-06-22T10:42:03Z
dc.date.issued2022
dc.descriptionCRUE-CSIC (Acuerdos Transformativos 2022)
dc.description.abstractWe are concerned here with Sobolev-type spaces of vector-valued functions. For an open subset Ω⊂RN and a Banach space V, we characterize the functions in the Sobolev-Reshetnyak space R1,p(Ω, V), where 1 ≤p≤∞, in terms of the existence of partial metric derivatives or partial w∗-derivatives with suitable integrability properties. In the case p=∞ the Sobolev-Reshetnyak space R1,∞(Ω, V)is characterized in terms of a uniform local Lipschitz property. We also consider the special case of the space V=l∞.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/72016
dc.identifier.doi10.1016/j.jmaa.2022.126250
dc.identifier.issn0022-247X
dc.identifier.officialurlhttps://doi.org/10.1016/j.jmaa.2022.126250
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0022247X22002645
dc.identifier.urihttps://hdl.handle.net/20.500.14352/71429
dc.issue.number1
dc.journal.titleJournal of Mathematical Analysis and Applications
dc.language.isoeng
dc.page.initial126250
dc.publisherElsevier
dc.relation.projectIDPGC2018-097286-B-I00
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.cdu517.982.2
dc.subject.cdu517.983
dc.subject.keywordSobolev spaces
dc.subject.keywordVector-valued functions
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleCharacterizing Sobolev spaces of vector-valued functions
dc.typejournal article
dc.volume.number514
dcterms.references[1]L. Ambrosio, Metric space valued functions of bounded variation, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 17(3) (1990) 439–478. [2]L. Ambrosio, B. Kirchheim, Rectifiable sets in metric and Banach spaces, Math. Ann. 318(3) (2000) 527–555. [3]W. Arendt, M. Kreuter, Mapping theorems for Sobolev spaces of vector-valued functions, Stud. Math. 240 (2018) 275–299. [4]Y. Benyamini, J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Colloquium Publications, vol.48, Amer. Math. Soc., Providence, RI, 2000. [5]I. Caamaño, J.A. Jaramillo, A. Prieto, A. Ruiz de Alarcón, Sobolev spaces of vector-valued functions, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 115(1) (2021) 19. [6]P. Creutz, N. Evseev, An approach to metric space valued Sobolev maps via weak* derivatives, arXiv :2106 .15449, 2021. [7]J. Diestel, J.J. Uhl Jr., Vector Measures, Math Surveys Monogr., vol.15, Amer. Math. Soc., Providence, RI, 1977. [8]J. Duda, Absolutely continuous functions with values in a metric space, Real Anal. Exch. 23(2) (2007) 569–582. [9]S. Eriksson-Bique, G. Giovannardi, R. Korte, N. Shanmugalingam, G. Speight, Regularity of solutions to the fractional Cheeger-Laplacian on domains in metric spaces of bounded geometry, J. Differ. Equ. 306 (2022) 590–632. [10]N. Evseev, Vector-valued Sobolev spaces based on Banach function spaces, Nonlinear Anal. 211 (2021) 112479. [11]S.M. Gonek, H.L. Montgomery, Kronecker’s approximation theorem, Indag. Math. 27 (2016) 506–523. [12]P. Hajłasz, J.T. Tyson, Sobolev Peano cubes, Mich. Math. J. 56 (2008) 687–702. [13]J. Heinonen, P. Koskela, N. Shanmugalingam, J.T. Tyson, Sobolev classes of Banach-valued functions and quasiconformal mappings, J. Anal. Math. 85 (2001) 87–139. [14]J. Heinonen, P. Koskela, N. Shanmugalingam, J.T. Tyson, Sobolev Spaces on Metric Measure Spaces. An Approach Based on Upper Gradients, New Math. Monogr., vol.27, Cambridge University Press, Cambridge, 2005. [15]B. Kirchheim, Rectifiable metric spaces: local structure and regularity of the Hausdorff measure, Proc. Am. Math. Soc. 121(1) (1994) 113–123. [16]M. Kreuter, Sobolev Spaces of Vector-Valued Functions, Master Thesis, Ulm University, 2015. [17]J. Malý, W.P. Ziemer, Fine Regularity of Solutions of Elliptic Partial DifferentialEquations, Math. Surveys Monogr., vol.51, American Mathematical Society, Providence, RI, 1997. [18]Yu G. Reshetnyak, Sobolev classes of functions with values in a metric spaces, Sib. Math. J. 38 (1997) 567–583. [19]W. Sierpiński, Sur la question de la mesurabilité de la base de M. Hamel, Fundam. Math. 1 (1920) 105–111.
dspace.entity.typePublication
relation.isAuthorOfPublication139f413f-736a-4f3f-8809-b5677c81a272
relation.isAuthorOfPublication8b6e753b-df15-44ff-8042-74de90b4e3e9
relation.isAuthorOfPublicationf2a43f90-b551-412e-a95d-2587bbfaa27d
relation.isAuthorOfPublication.latestForDiscovery139f413f-736a-4f3f-8809-b5677c81a272

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JMAA-2022-PUBLICADO.pdf
Size:
444.7 KB
Format:
Adobe Portable Document Format

Collections