Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Characterizing Sobolev spaces of vector-valued functions

Loading...
Thumbnail Image

Full text at PDC

Publication date

2022

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

We are concerned here with Sobolev-type spaces of vector-valued functions. For an open subset Ω⊂RN and a Banach space V, we characterize the functions in the Sobolev-Reshetnyak space R1,p(Ω, V), where 1 ≤p≤∞, in terms of the existence of partial metric derivatives or partial w∗-derivatives with suitable integrability properties. In the case p=∞ the Sobolev-Reshetnyak space R1,∞(Ω, V)is characterized in terms of a uniform local Lipschitz property. We also consider the special case of the space V=l∞.

Research Projects

Organizational Units

Journal Issue

Description

CRUE-CSIC (Acuerdos Transformativos 2022)

Unesco subjects

Keywords

Collections