Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

On the conformal geometry of transverse Riemann-Lorentz manifolds.

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2007

Advisors (or tutors)

Journal Title

Journal ISSN

Volume Title

Publisher

Real Sociedad Matemática Española
Citations
Google Scholar

Citation

Abstract

Let M be a connected manifold and let g be a symmetric covariant tensor field of order 2 on M. Assume that the set of points where g degenerates is not empty. If U is a coordinate system around p 2 , then g is a transverse type-changing metric at p if dp(det(g)) 6= 0, and (M, g) is called a transverse type-changing pseudo-iemannian manifold if g is transverse type-changing at every point of . The set is a hypersurface of M. Moreover, at every point of there exists a one-dimensional radical, that is, the subspace Radp(M) of TpM, which is g-orthogonal to TpM. The index of g is constant on every connected component M = M r; thus M is a union of connected pseudo-Riemannian manifolds. Locally, separates two pseudo-Riemannian manifolds whose indices differ by one unit. The authors consider the cases where separates a Riemannian part from a Lorentzian one, so-called transverse Riemann-Lorentz manifolds. In this paper, they study the conformal geometry of transverse Riemann-Lorentz manifolds

Research Projects

Organizational Units

Journal Issue

Description

Keywords