On the conformal geometry of transverse Riemann-Lorentz manifolds.
dc.book.title | XV International Workshop on Geometry and Physics: Puerto de la Cruz, Tenerife, Canary Islands, Spain : September 11-16, 2006 | |
dc.contributor.author | Aguirre Dabán, Eduardo | |
dc.contributor.author | Fernández Mateos, Víctor | |
dc.contributor.author | Lafuente López, Javier | |
dc.contributor.editor | Iglesias Ponte, David | |
dc.contributor.editor | Marrero González, Juan Carlos | |
dc.contributor.editor | Martín Cabrera, Francisco | |
dc.contributor.editor | Padrón Fernández, Edith | |
dc.contributor.editor | Sosa Martín, Diana | |
dc.date.accessioned | 2023-06-20T13:39:01Z | |
dc.date.available | 2023-06-20T13:39:01Z | |
dc.date.issued | 2007 | |
dc.description.abstract | Let M be a connected manifold and let g be a symmetric covariant tensor field of order 2 on M. Assume that the set of points where g degenerates is not empty. If U is a coordinate system around p 2 , then g is a transverse type-changing metric at p if dp(det(g)) 6= 0, and (M, g) is called a transverse type-changing pseudo-iemannian manifold if g is transverse type-changing at every point of . The set is a hypersurface of M. Moreover, at every point of there exists a one-dimensional radical, that is, the subspace Radp(M) of TpM, which is g-orthogonal to TpM. The index of g is constant on every connected component M = M r; thus M is a union of connected pseudo-Riemannian manifolds. Locally, separates two pseudo-Riemannian manifolds whose indices differ by one unit. The authors consider the cases where separates a Riemannian part from a Lorentzian one, so-called transverse Riemann-Lorentz manifolds. In this paper, they study the conformal geometry of transverse Riemann-Lorentz manifolds | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20276 | |
dc.identifier.isbn | 978-84-935193-1-2 | |
dc.identifier.relatedurl | http://www.rsme.es/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/53205 | |
dc.issue.number | 11 | |
dc.language.iso | eng | |
dc.page.final | 211 | |
dc.page.initial | 205 | |
dc.page.total | 366 | |
dc.publication.place | Madrid | |
dc.publisher | Real Sociedad Matemática Española | |
dc.relation.ispartofseries | Publicaciones de la Real Sociedad Matemática Española | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 514.7 | |
dc.subject.ucm | Geometría diferencial | |
dc.subject.unesco | 1204.04 Geometría Diferencial | |
dc.title | On the conformal geometry of transverse Riemann-Lorentz manifolds. | |
dc.type | book part | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 88ba3646-cb2e-4524-b117-737c56cec2a4 | |
relation.isAuthorOfPublication | 38d24ccf-5c11-420a-8fac-487c18b5cc1b | |
relation.isAuthorOfPublication.latestForDiscovery | 88ba3646-cb2e-4524-b117-737c56cec2a4 |
Download
Original bundle
1 - 1 of 1