Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the set of bounded linear operators transforming a certain sequence of a Hilbert space into an absolutely summable one

Loading...
Thumbnail Image

Full text at PDC

Publication date

1980

Advisors (or tutors)

Journal Title

Journal ISSN

Volume Title

Publisher

North-Holland
Citations
Google Scholar

Citation

Abstract

From the text: "Let H be a real, separable Hilbert space, B the set of bounded linear operators on H, and S={an:n∈N} a fixed sequence in H; we set CS={A∈B:∑∞n=1||Aan||<∞}. Obviously CS≠{0}, and it is easy to check that CS is a left ideal. Theorem 1: Let S={an:n∈N} be summable. Then CS contains a noncompletely continuous operator. Theorem 2: Let S={an:n∈N} be such that ∑∞n=1||an|||=∞; then there exists a completely continuous operator C not belonging to CS.''

Research Projects

Organizational Units

Journal Issue

Description

Proceedings of the 4th Colloquium on Topology in Budapest, 7-11 Aug. 1978, organized by the Bolyai János Mathematical Society

Unesco subjects

Keywords