On the set of bounded linear operators transforming a certain sequence of a Hilbert space into an absolutely summable one
dc.book.title | Topology | |
dc.contributor.author | Martín Peinador, Elena | |
dc.contributor.editor | Császár, Ákos | |
dc.date.accessioned | 2023-06-21T02:43:02Z | |
dc.date.available | 2023-06-21T02:43:02Z | |
dc.date.issued | 1980 | |
dc.description | Proceedings of the 4th Colloquium on Topology in Budapest, 7-11 Aug. 1978, organized by the Bolyai János Mathematical Society | |
dc.description.abstract | From the text: "Let H be a real, separable Hilbert space, B the set of bounded linear operators on H, and S={an:n∈N} a fixed sequence in H; we set CS={A∈B:∑∞n=1||Aan||<∞}. Obviously CS≠{0}, and it is easy to check that CS is a left ideal. Theorem 1: Let S={an:n∈N} be summable. Then CS contains a noncompletely continuous operator. Theorem 2: Let S={an:n∈N} be such that ∑∞n=1||an|||=∞; then there exists a completely continuous operator C not belonging to CS.'' | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22371 | |
dc.identifier.isbn | 0444854061 | |
dc.identifier.officialurl | http://cisne.sim.ucm.es/record=b1039946~S6*spi | |
dc.identifier.relatedurl | http://cisne.sim.ucm.es | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/65473 | |
dc.issue.number | 23 | |
dc.language.iso | eng | |
dc.page.final | 837 | |
dc.page.initial | 829 | |
dc.page.total | 1260 | |
dc.publication.place | Amsterdam | |
dc.publisher | North-Holland | |
dc.relation.ispartofseries | Colloquia mathematica societatis János Bolyai | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.98 | |
dc.subject.keyword | Bounded operators | |
dc.subject.keyword | absolutely summable sequence | |
dc.subject.keyword | left ideal | |
dc.subject.keyword | bilateral ideal | |
dc.subject.keyword | ideal of completely continuous operators | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | On the set of bounded linear operators transforming a certain sequence of a Hilbert space into an absolutely summable one | |
dc.type | book part | |
dc.volume.number | 2 | |
dcterms.references | J. W. Calkin, Two sided ideals and congruences in the ring of bounded operators in Hilbert spaces, Ann. of Math., 42(2)(1941). 839-873 C. Gohberg - A. Markus, Some relations between eigenvalues and matrix elements of linear operators, Math. Sbornik, 64 (106)(1964), 48-496 M. A. Naimark, Normed rings, Wolters Noordhoff publishing groingen, 1970, the Netherlands A. Peiczynski, A characterization of Hilbert-Schmidt operators, Studia Mathematica, 28(1967) | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 0074400c-5caa-43fa-9c45-61c4b6f02093 | |
relation.isAuthorOfPublication.latestForDiscovery | 0074400c-5caa-43fa-9c45-61c4b6f02093 |
Download
Original bundle
1 - 1 of 1