Homogenization in a thin domain with an oscillatory boundary

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
In this paper we analyze the behavior of the Laplace operator with Neumann boundary conditions in a thin domain of the type where the function G(x,y) is periodic in y of period L. Observe that the upper boundary of the thin domain presents a highly oscillatory behavior and, moreover, the height of the thin domain, the amplitude and period of the oscillations are all of the same order, given by the small parameter ϵ.
[1] Y. Amirat, O. Bodart, U. de Maio, A. Gaudiello, “Asymptotic Approximation of the solution of the Laplace equation in a domain with highly oscillating boundary", SIAM J. Math. Anal. 35, 1598-1616 (2004) [2] J. M. Arrieta, Spectral properties of Schrödinger operators under perturbations of the domain, Ph.D. Thesis, Georgia Institute of Technology, (1991) [3] J. M. Arrieta and M. C. Pereira, “Elliptic problems in thin domains with highly oscillating boundaries", Bol. Soc. Esp. Mat. Apl., to appear. [4] J. M. Arrieta, A. N. Carvalho, M. C. Pereira and R. P. da Silva; “Attractors in thin domains with a highly oscillatory boundary", Submitted. [5] A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland Publishing Company (1978). [6] R. Brizzi, J.P. Chalot, “Boundary homogenization and Neumann boundary problem" Ricerce di Matematica XLVI, 2 (1997) 341-387 [7] V. Burenkov, P.D. Lamberti, “Spectral Stability of general non-negarive self-adjoint operators with applications to Neumann-type operators", J. Differential Equations 233 (2007), 345-379 [8] D. Cioranescu and J. Saint Jean Paulin; Homogenization of Reticulated Structures, Springer Verlag (1980). [9] A. Damlamian, K. Pettersson, “Homogenization of oscillating boundaries" , Discrete and Continuous Dynamical Systems 23, (2009), 197-219 [10] J. K. Hale and G. Raugel, “Reaction-diffusion equation on thin domains", J. Math. Pures and Appl. (9) 71, no. 1, 33-95 (1992). [11] G. Raugel; Dynamics of partial differential equations on thin domains in Dynamical systems (Montecatini Terme, 1994), 208-315, Lecture Notes in Math., 1609, Springer, Berlin, 1995. [12] E. Sánchez-Palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics 127, Springer Verlag (1980) [13] L. Tartar; Problèmmes d'homogénéisation dans les équations aux dérivées partielles, Cours Peccot, Collège de France (1977). [14] L. Tartar, “Quelques remarques sur l'homegénéisation", Function Analysis and Numerical Analysis, Proc. Japan-France Seminar 1976, ed. H. Fujita, Japanese Society for the Promotion of Science, 468-482 (1978).