Homogenization in a thin domain with an oscillatory boundary
dc.contributor.author | Arrieta Algarra, José María | |
dc.contributor.author | Pereira, Marcone C. | |
dc.date.accessioned | 2023-06-20T00:06:28Z | |
dc.date.available | 2023-06-20T00:06:28Z | |
dc.date.issued | 2011 | |
dc.description.abstract | In this paper we analyze the behavior of the Laplace operator with Neumann boundary conditions in a thin domain of the type where the function G(x,y) is periodic in y of period L. Observe that the upper boundary of the thin domain presents a highly oscillatory behavior and, moreover, the height of the thin domain, the amplitude and period of the oscillations are all of the same order, given by the small parameter ϵ. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGES | |
dc.description.sponsorship | PC | |
dc.description.sponsorship | MICINN | |
dc.description.sponsorship | BSCH-UCM, Spain | |
dc.description.sponsorship | FAPESP | |
dc.description.sponsorship | CAPES DGU | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/13402 | |
dc.identifier.doi | 10.1016/j.matpur.2011.02.003 | |
dc.identifier.issn | 0021-7824 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/journal/00217824 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/41983 | |
dc.issue.number | 1 | |
dc.journal.title | Journal de Mathématiques Pures et Appliquées | |
dc.language.iso | eng | |
dc.page.final | 57 | |
dc.page.initial | 29 | |
dc.publisher | Elsevier | |
dc.relation.projectID | MTM2009-07540 | |
dc.relation.projectID | MTM2006-08262 | |
dc.relation.projectID | PHB2006-003 PC | |
dc.relation.projectID | PR2009-0027 | |
dc.relation.projectID | GR58/08 | |
dc.relation.projectID | Grupo 920894 “Comportamiento Asintótico y Dinámica de Ecuaciones Diferenciales-CADEDIF” | |
dc.relation.projectID | 2008/53094-4 | |
dc.relation.projectID | 127/07 | |
dc.relation.projectID | 305210/2008-4 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.9 | |
dc.subject.keyword | Thin domain | |
dc.subject.keyword | Oscillating boundary | |
dc.subject.keyword | Homogenization | |
dc.subject.keyword | Extension operator | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Homogenization in a thin domain with an oscillatory boundary | |
dc.type | journal article | |
dc.volume.number | 96 | |
dcterms.references | [1] Y. Amirat, O. Bodart, U. de Maio, A. Gaudiello, “Asymptotic Approximation of the solution of the Laplace equation in a domain with highly oscillating boundary", SIAM J. Math. Anal. 35, 1598-1616 (2004) [2] J. M. Arrieta, Spectral properties of Schrödinger operators under perturbations of the domain, Ph.D. Thesis, Georgia Institute of Technology, (1991) [3] J. M. Arrieta and M. C. Pereira, “Elliptic problems in thin domains with highly oscillating boundaries", Bol. Soc. Esp. Mat. Apl., to appear. [4] J. M. Arrieta, A. N. Carvalho, M. C. Pereira and R. P. da Silva; “Attractors in thin domains with a highly oscillatory boundary", Submitted. [5] A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland Publishing Company (1978). [6] R. Brizzi, J.P. Chalot, “Boundary homogenization and Neumann boundary problem" Ricerce di Matematica XLVI, 2 (1997) 341-387 [7] V. Burenkov, P.D. Lamberti, “Spectral Stability of general non-negarive self-adjoint operators with applications to Neumann-type operators", J. Differential Equations 233 (2007), 345-379 [8] D. Cioranescu and J. Saint Jean Paulin; Homogenization of Reticulated Structures, Springer Verlag (1980). [9] A. Damlamian, K. Pettersson, “Homogenization of oscillating boundaries" , Discrete and Continuous Dynamical Systems 23, (2009), 197-219 [10] J. K. Hale and G. Raugel, “Reaction-diffusion equation on thin domains", J. Math. Pures and Appl. (9) 71, no. 1, 33-95 (1992). [11] G. Raugel; Dynamics of partial differential equations on thin domains in Dynamical systems (Montecatini Terme, 1994), 208-315, Lecture Notes in Math., 1609, Springer, Berlin, 1995. [12] E. Sánchez-Palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics 127, Springer Verlag (1980) [13] L. Tartar; Problèmmes d'homogénéisation dans les équations aux dérivées partielles, Cours Peccot, Collège de France (1977). [14] L. Tartar, “Quelques remarques sur l'homegénéisation", Function Analysis and Numerical Analysis, Proc. Japan-France Seminar 1976, ed. H. Fujita, Japanese Society for the Promotion of Science, 468-482 (1978). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 2f8ee04e-dfcb-4000-a2ae-18047c5f0f4a | |
relation.isAuthorOfPublication.latestForDiscovery | 2f8ee04e-dfcb-4000-a2ae-18047c5f0f4a |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2010homogenization-07.pdf
- Size:
- 503.02 KB
- Format:
- Adobe Portable Document Format