Green production of cladribine by using immobilized 2'-deoxyribosyltransferase from Lactobacillus delbrueckii stabilized through a double covalent/entrapment Technology
Loading...
Official URL
Full text at PDC
Publication date
2021
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Citation
Rivero CW, García NS, Fernández-Lucas J, Betancor L, Romanelli GP, Trelles JA. Green Production of Cladribine by Using Immobilized 2′-Deoxyribosyltransferase from Lactobacillus delbrueckii Stabilized through a Double Covalent/Entrapment Technology. Biomolecules 2021;11:657. https://doi.org/10.3390/biom11050657
Abstract
Nowadays, enzyme-mediated processes offer an eco-friendly and efficient alternative to the traditional multistep and environmentally harmful chemical processes. Herein we report the enzymatic synthesis of cladribine by a novel 2′-deoxyribosyltransferase (NDT)-based combined biocatalyst. To this end, Lactobacillus delbrueckii NDT (LdNDT) was successfully immobilized through a two-step immobilization methodology, including a covalent immobilization onto glutaraldehyde-activated biomimetic silica nanoparticles followed by biocatalyst entrapment in calcium alginate. The resulting immobilized derivative, SiGPEI 25000-LdNDT-Alg, displayed 98% retained activity and was shown to be active and stable in a broad range of pH (5–9) and temperature (30–60 °C), but also displayed an extremely high reusability (up to 2100 reuses without negligible loss of activity) in the enzymatic production of cladribine. Finally, as a proof of concept, SiGPEI 25000-LdNDT-Alg was successfully employed in the green production of cladribine at mg scale.
Description
This research was mainly supported by Agencia Nacional de Promoción Científica y Tecnológica (PICT 2014–3438), Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 2014- 11220130100805CO) and Universidad Nacional de Quilmes (PUNQ 1305/19, PPROF 2017-EXPTE.895/18)