High-pressure reactively sputtered HfO2: Composition, morphology, and optical properties

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Institute of Physics
Google Scholar
Research Projects
Organizational Units
Journal Issue
Hafnium oxide films were deposited by high pressure reactive sputtering using different deposition pressures and times. The composition, morphology, and optical properties of the films, together with the sputtering process growth kinetics were investigated using heavy ion elastic recoil detection analysis, Fourier transform infrared spectroscopy, ultraviolet-visible-near infrared spectroscopy, x-ray diffraction, and transmission electron microscopy. The films showed a monoclinic polycrystalline structure, with a grain size depending on the deposition pressure. All films were slightly oxygen rich with respect to stoichiometric HfO2 and presented a significant amount of hydrogen (up to 6 at. %), which is attributed to the high affinity for moisture of the HfO2 films. The absorption coefficient was fitted to the Tauc law, obtaining a band gap value of 5.54 eV. It was found that the growth rate of the HfO2 films depends on the deposition pressure (P) as P-1.75. This dependence is explained by a diffusion model of the thermalized atoms in high-pressure sputtering. Additionally, the formation of an interfacial silicon oxide layer when the films were grown on silicon was observed, with a minimum thickness for deposition pressures around 1.2 mbars. This interfacial layer was formed mainly during the initial stages of the deposition process, with only a slight increase in thickness afterwards. These results are explained by the oxidizing action of the oxygen plasma and the diffusion of oxygen radicals and hydroxyl groups through the polycrystalline HfO2 film. Finally, the dielectric properties of the HfO2/SiO2 stacks were studied by means of conductance and capacitance measurements on Al/HfO2/SiO2/Si devices as a function of gate voltage and ac frequency signal.
© 2007 American Institute of Physics. The authors acknowledge C.A.I. de Técnicas Físicas, C.A.I. de Espectroscopía y Espectrometría, and C.A.I. de Microscopía y Citometría of the Universidad Complutense de Madrid for technical support. J. Gandía and J. Cárabe (CIEMAT) are acknowledged for optical measurements. J.J. Jiménez (UCM) is gratefully acknowledged for careful discussion on sputtering system. This work was made possible thanks to the AP2003-4434-FPU grant of the Spanish M.E.C. and the contracts TEC 2004-1237/MIC and TEC2007/63318 of the Spanish M.C.Y.T.
Unesco subjects
1) J. Robertson, Rep. Prog. Phys. 69, 327 (2006). 2) S. H. Oh et al., Digest of Technical Papers of the 2003 Symposium on VLSI Technology, 2003 (unpublished), pp. 73–74. 3) M. Lesser, Opt. Eng. 26, 911 (1987). 4) M. Fadel, O. A. Azim, O. A. Omer, and R. R. Basily, Appl. Phys. A: Mater. Sci. Process. 66, 335 (1998). 5) C. Moldovan, R. Iosub, M. Modreanu, D. Ulieru, B. Firtat, and M. Ion, International Semiconductor Conference 2006 (unpublished), pp. 185–188. 6) T. Wang, C. Chang, and J. G. Hwu, IEEE Sens. J. 6, 1468 (2006). 7) F. Wallrapp and P. Fromherz, J. Appl. Phys. 99, 114103 (2006). 8) H. Grüger, Ch. Kunath, E. Kurth, S. Sorge, W. Pufe, and T. Pechstein, Thin Solid Films 447–448, 509 (2004). 9) U. Poppe et al., J. Appl. Phys. 71, 5572 (1992). 10) B. Chapman, Glow Discharge Processes (Wiley, New York, 1980). 11) M. A. Navacerrada, M. L. Lucía, and F. Sánchez-Quesada, Phys. Rev. B 61, 6422 (2000). 12) E. San Andrés et al., J. Vac. Sci. Technol. A 23, 1523 (2005). 13) M. I. Faley, S. B. Mi, A. Petraru, C. L. Jia, U. Poppe, and K. Urban, Appl. Phys. Lett. 89, 082507 (2006). 14) F. L. Martínez, M. Toledano, E. San Andrés, I. Mártil, G. González-Díaz, W. Bohne, J. Röhrich, and E. Strub, Thin Solid Films 515, 695 (2006). 15) W. Kern, RCA Rev. 31, 187 (1970). 16) W. Bohne, J. Röhrich, and G. Röschert, Nucl. Instrum. Methods Phys. Res. B 136–138, 633 (1998). 17) W. Bohne, S. Hessler, and G. Röschert, Nucl. Instrum. Methods Phys. Res. B 113, 78 (1996). 18) W. Bohne, W. Fuhs, J. Röhrich, B. Selle, G. González-Díaz, I. Mártil, F. L. Martínez, and A. del Prado, Surf. Interface Anal. 30, 534 (2000). 19) J. L. Hernández-Rojas, M. L. Lucía, I. Mártil, G. González-Díaz, J. Santamaría, and F. Sánchez-Quesada, Appl. Opt. 31, 1606 (1992). 20) J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi 15, 627 (1966). 21) B. D. Cullity, Elements of X-ray Diffraction 2nd ed. �Addison-Wesley, Reading, MA, (1978). 22) E. H. Nicollian and J. R. Brews, MOS Physics and Technology (Wiley, New York, 1982), p. 197. 23) M. M. Frank, S. Sayan, S. Dörmann, T. J. Emge, L. S. Wielunski, E. Garfunkel, and Y. J. Chabal, Mater. Sci. Eng., B 109, 6 (2004). 24) D. A. Neumayer and E. Cartier, J. Appl. Phys. 90, 1801 (2001). 25) J. T. Fitch, S. S. Kim, and G. Lucovsky, J. Vac. Sci. Technol. A 8, 1871 (1990). 26) A. Kawamoto, J. Jameson, P. Griffin, K. Cho, and R. Dutton, IEEE Electron Device Lett. 22, 14 (2001). 27) M. Mayer, IPP Report No. 9/113, 1997 (unpublished). 28) P. Raghu, N. Rana, C. Yim, E. Shero, and F. Shadman, J. Electrochem. Soc. 150, F186 (2003). 29) D. L. Wood, K. Nassau, T. Y. Kometani, and D. L. Nash, Appl. Opt. 29, 604 (1990). 30) R. E. Hann, P. R. Suitch, and J. L. Pentecost, J. Am. Ceram. Soc. 68, 285 (1985). 31) W. Umrath, Fundamentals of Vacuum Technology. Leybold vacuum products and reference book 2001/2002 (Leybold, Cologne, 2001). 32) I. Abril, A. Gras-Martí, J. J. Jiménez-Rodríguez, V. Konoplev, J. C. Moreno Marín, and A. M. C. Pérez-Martín, Trends in Vacuum Sci. & Tech. 1, 251 (1993). 33) A. G. Znamenski and V. A. Marchenko, Tech. Phys. 43, 766 (1998). 34) B. Tsui and H. Chang, J. Appl. Phys. 93, 10119 (2003). 35) K. J. Hubbard and D. G. Schlom, J. Mater. Res. 11, 2757 (1996). 36) W. D. Kingery, Introduction to Ceramics (Wiley, New York, 1960). 37) L. Pantisano, J. Ramos, E. San Andrés-Serrano, Ph. J. Roussel, W. Sansen, and G. Groeseneken, Proceedings of the 2006 IEEE International Conference on Microelectronic Test Structures, 2006 (unpublished), pp. 222–225.